Electrical Study of Al/n-ZnS Schottky Junction on Polymer Substrate

Authors

  • Sandhya Gupta Kautilya Institute of Technology & Engineering, Jaipur-302022, India
  • N.S. Saxena Semiconductor & Polymer Science Laboratory, Dept. of Physics, University of Rajasthan, Jaipur-302004, India
  • Kananbala Sharma Semiconductor & Polymer Science Laboratory, Dept. of Physics, University of Rajasthan, Jaipur-302004, India

DOI:

https://doi.org/10.6000/1929-5995.2013.02.02.4

Keywords:

Schottky barrier, Optical properties, Thermionic emission, Polyethylene terephthalate, Band gap

Abstract

A study has been made on the behaviour of Al/n-ZnS thin film junction on Polyethylene terephthalate (PET) grown using thermal evaporation method. Current-Voltage (I-V) characteristics of this junction show that the Aluminium (Al) makes Schottky contact with n-ZnS (Zinc Sulfide). Intrinsic and contact properties such as saturation current, barrier height, ideality factor and series resistance were calculated from the I-V characteristics. The conduction seems to be predominantly due to thermoionic emission-diffusion mechanism. An effort has also been made to carry out the optical study of ZnS thin film using spectrophotometer. Band gap of n-ZnS thin film is determined through absorption spectra using the Tauc’s extrapolation. A band diagram of Al/n-ZnS has been proposed using the so obtained data.

References

Bar M, Ennaoui A, Klaer J, Saez-Araoz R, Kropp T, Weinhardt L, et al. The electronic structure of the [Zn(S,O)/ZnS]/CuInS2 heterointerface – Impact of post-annealing. Chem Phys Lett 2006; 433: 71-74. http://dx.doi.org/10.1016/j.cplett.2006.11.022 DOI: https://doi.org/10.1016/j.cplett.2006.11.022

Gangopadhyay U, Kim K, Mangalaraj D, Yi J. Low cost CBD ZnS antireflection coating on large area commercial mono-crystalline silicon solar cells. Appl Surf Sci 2004; 230: 364-70. http://dx.doi.org/10.1016/j.apsusc.2004.02.059 DOI: https://doi.org/10.1016/j.apsusc.2004.02.059

Deulkara SH, Bhosalea CH, Sharonb M. A comparative study of structural, compositional, thermal and optical properties of non stoichiometric (Zn,Fe)S chalcogenide pellets and thin films. J Phys Chem Solids 2004: 65: 1879-85. http://dx.doi.org/10.1016/j.jpcs.2004.06.012 DOI: https://doi.org/10.1016/j.jpcs.2004.06.012

Pang H, Yuan Y, Zhou Y, Lian J, Cao L, Zhang J, et al. Lumin J 2007; 587: 122-3. DOI: https://doi.org/10.1016/j.jlumin.2006.01.232

Mu J, Zhang Y. ZnS thin film prepared through a self-assembled thin film precursor route. Appl Surf Sci 2006; 252: 7826-29. http://dx.doi.org/10.1016/j.apsusc.2005.09.047 DOI: https://doi.org/10.1016/j.apsusc.2005.09.047

Gal D, Hodes G, Lincot D, Schock HW. Thin Solid Films 2000; 79: 3612. DOI: https://doi.org/10.1016/S0040-6090(99)00772-5

Yano S, Schroeder R, Ullrich B, Sakai H. Absorption and photocurrent properties of thin ZnS films formed by pulsed-laser deposition on quartz. Thin Solid Films 2003; 423: 273-76. http://dx.doi.org/10.1016/S0040-6090(02)01037-4 DOI: https://doi.org/10.1016/S0040-6090(02)01037-4

Barreca D, Gasparotto A, Maragno C, Tondello E, Sada C. CVD of Nanophasic (Zn, Cd)S Thin Films: From Multi-Layers to Solid Solutions. Chem Vapour Depos 2004; 10: 229-36. http://dx.doi.org/10.1002/cvde.200306292 DOI: https://doi.org/10.1002/cvde.200306292

Kavanagh Y, Cameron DC. Thin Solid Films 2001; 24: 398-9. DOI: https://doi.org/10.1016/S0040-6090(01)01298-6

Hernandez-Fenollosa MA, Lopez MC, Donderis V, Gonzalez M, Mari B, Ramos-Barrado JR. Role of precursors on morphology and optical properties of ZnS thin films prepared by chemical spray pyrolysis. Thin Solid Films 2008; 516: 1622-25. http://dx.doi.org/10.1016/j.tsf.2007.05.031 DOI: https://doi.org/10.1016/j.tsf.2007.05.031

McAleese OP. Developing an understanding of the processes controlling the chemical bath deposition of ZnS and CdS. J Mater Chem 1998; 8: 2309-14. http://dx.doi.org/10.1039/a804692a DOI: https://doi.org/10.1039/a804692a

Shaban SM, Saeed NM, AL-Haddad RMS. Indian J Sci Technol 2011; 4: 384.

Latitha S, Sathyamoorthy R, Senthilarasu S, Subbarayan A, Natarajan K. Characterization of CdTe thin film—dependence of structural and optical properties on temperature and thickness. Solar Energy Mater Solar Cells 2004; 82: 187-99. http://dx.doi.org/10.1016/j.solmat.2004.01.017 DOI: https://doi.org/10.1016/j.solmat.2004.01.017

Naby MA. Temperature dependence of I-V and C-V characteristics of A1/CdTe Schottky diodes. Renewable Energy 1995; 6: 567-72. http://dx.doi.org/10.1016/0960-1481(95)00047-N DOI: https://doi.org/10.1016/0960-1481(95)00047-N

Tersoff J. Schottky Barrier Heights and the Continuum of Gap States. Phys Rev Lett 1984; 52: 465-68. http://dx.doi.org/10.1103/PhysRevLett.52.465 DOI: https://doi.org/10.1103/PhysRevLett.52.465

Tersoff J. Schottky barriers and semiconductor band structures. Phys Rev B 1985; 32: 6968-71. http://dx.doi.org/10.1103/PhysRevB.32.6968 DOI: https://doi.org/10.1103/PhysRevB.32.6968

Tung RT. Electron transport at metal-semiconductor interfaces: General theory. Phys Rev B 1992; 45: 13509-23. http://dx.doi.org/10.1103/PhysRevB.45.13509 DOI: https://doi.org/10.1103/PhysRevB.45.13509

Pattabi M, Krishnan S, Ganesh, Mathew X. Effect of temperature and electron irradiation on the I–V characteristics of Au/CdTe Schottky diodes. Solar Energ 2007; 81: 111-16. http://dx.doi.org/10.1016/j.solener.2006.06.004 DOI: https://doi.org/10.1016/j.solener.2006.06.004

Lise B. Fundamentals of Semiconductor Devices, 1st ed., New York: Mc.Graw Hill 2004; pp. 331-333.

Mishra U, Singh KJ. Semiconductor Device Physics and Design, Netherland: Springer 2008; p. 217.

Freeouf JL, Woodall JM. Schottky barriers: An effective work function model. Appl Phys Lett 1981; 39: 727. http://dx.doi.org/10.1063/1.92863 DOI: https://doi.org/10.1063/1.92863

Tauc J. Amorphous & Liquid Semiconductors, New York: Plenum 1974; p.159. http://dx.doi.org/10.1007/978-1-4615-8705-7_4 DOI: https://doi.org/10.1007/978-1-4615-8705-7_4

Downloads

Published

2013-06-25

How to Cite

Gupta, S., Saxena, N., & Sharma, K. (2013). Electrical Study of Al/n-ZnS Schottky Junction on Polymer Substrate. Journal of Research Updates in Polymer Science, 2(2), 110–114. https://doi.org/10.6000/1929-5995.2013.02.02.4

Issue

Section

Articles