Formulation, Characterization, Study of Swelling Kinetics and Network Parameters of Poly (MA-co-VA-co-AA) Terpolymeric Hydrogels with Various Concentrations of Acrylic Acid

Authors

  • Rubab Zohra Chemistry Department, Bahauddin Zakarya University, Multan, Pakistan
  • Muhammad Aslam Malana Chemistry Department, Bahauddin Zakarya University, Multan, Pakistan
  • Zafar Iqbal Chemistry Department, Bahauddin Zakarya University, Multan, Pakistan

DOI:

https://doi.org/10.6000/1929-5995.2013.02.03.1

Keywords:

Hydrogels, acrylic acid, swelling, radical polymerization, ter-polymer

Abstract

The ter-polymeric hydrogels of vinylacetate (VA), methacrylate (MA) and acrylicacid (AA) were prepared using ethyleneglycoldimethacrylate (EGDMA) as a cross linker and benzoylperoxide (BPO) as an initiator. The effect of acrylic acid concentration on various swelling parameters was studied at different pHs (1.0, 4.0, 5.5, 7.4 and 8.0). A promising relationship was found to exist between media penetration velocity and equilibrium media content of hydrogels at all pH values for various concentration of acrylic acid. The fastest dynamic swelling was observed for the highest concentration of acrylic acid (40 mol % of AA) at pH 8.0. In the kinetic study, during the first hours, a first order kinetics (Fick Model) was observed at pH higher than the value of pKa (4.75) of acrylic acid, the hydrogels exhibiting non-Fickian diffusion mechanism. Whereas, for the acidic media pH, a second order kinetics was observed (Schott Model). Network parameters strongly support the swelling out comes. The relaxations of the ter-polymeric chain were observed after swelling at pH 8.0 via SEM pictures. Thermo gravimetric analysis and differential scanning calorimetric analysis also agree with the above conclusions. Well controlled swelling behavior, network properties, SEM out comings and thermo-gravimetric analysis support the idea to use these hydrogels for targeted drug delivery in the colon part of the digestive tract.

References

Devis KA, Anseth KS. Controlled release from crosslinked degradable networks. Crit Rev Ther Drug Carr System 2002; 19: 385-23. http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v19.i45.30 DOI: https://doi.org/10.1615/CritRevTherDrugCarrierSyst.v19.i45.30

Chien LC, Andrew TM, Hydrogels in controlled release formulation network design and mathematical modeling. Adv Drug. Delivery Rev 2006; 58: 1379- 408. http://dx.doi.org/10.1016/j.addr.2006.09.004 DOI: https://doi.org/10.1016/j.addr.2006.09.004

Ohmine I, Tanaka T. Salt effects of phase transitions of polymer gels. J Chem Phys 1982; 77: 5725-29. http://dx.doi.org/10.1063/1.443780 DOI: https://doi.org/10.1063/1.443780

Brandon-Peppas L, Harland RS, Eds. Absorbent polymer technology. Elsevier, Amsterdan-Oxford-New Cork-Tokio 1990; pp. 159-170.

Grimshaw PE, Grodzinsky AJ, Yarmush ML, Yarmush AM. Selective augmentation of macromolecular transport in gels by electro-diffusion and electro- kinetics. Chem Eng Sci 1990; 45: 2917-29. http://dx.doi.org/10.1016/0009-2509(90)80183-F DOI: https://doi.org/10.1016/0009-2509(90)80183-F

Frusawa H, Hayakawa R. Swellling mechanism unique to charged gels: Primary formulation of the free energy. Phys Rev 1998; E58: 6145-54. http://dx.doi.org/10.1103/PhysRevE.58.6145 DOI: https://doi.org/10.1103/PhysRevE.58.6145

Kashyap N, Kumar N, Kumar M. Crit Rev Thermal Drug Carr. Syst 2005; 22: 107-49. DOI: https://doi.org/10.1615/CritRevTherDrugCarrierSyst.v22.i2.10

Malana MA, Zafar ZI, Zuhra R. Effect of Cross Linker Concentration on Swelling Kinetics of a Synthesized Ternary Co-Polymer System. J Chem Soc Pak 2012; 34: 793-801.

Malana MA, Zohra R. The release behavior and kinetic evaluation of tramadol HCl from chemically cross linked Ter polymeric hydrogels. DARU J Pharm Sci 2013; 21. DOI: https://doi.org/10.1186/2008-2231-21-10

Zafar ZI, Malana MA, Pervez H, Shad MA, Momina K. Synthesis and swelling kinetics of a cross linked pH-sensitive ternary co-polymer gel system. Polym (Korea) 2008 32: 1-11.

Chen J, Belvins WE, Park H, Park K. Gastric retention properties of super porous hydrogels composites. J Control Release 2000; 64: 39-51. http://dx.doi.org/10.1016/S0168-3659(99)00139-X DOI: https://doi.org/10.1016/S0168-3659(99)00139-X

Chen J, Park K. Synthesis and characterization of superporous hydrogels composites. J Control Release 2000; 65: 73-82. http://dx.doi.org/10.1016/S0168-3659(99)00238-2 DOI: https://doi.org/10.1016/S0168-3659(99)00238-2

Dorkoosh FA, Verhoef JC, Ambagts MHC, Rafiee TM, Borchard G, Junginger HE. Per oral delivery systems based on superporous hydrogels polymers: release characteristics for the peptide drugs buserelin, octreotide and insulin. Eur J Pharma Sci 2002; 15: 433-39. http://dx.doi.org/10.1016/S0928-0987(02)00028-3 DOI: https://doi.org/10.1016/S0928-0987(02)00028-3

Ximming L, Yindgde C. Study on synthesis and chloral-mphenicol release of poly (2-hydroxyethynemethacrylate-co-acrylamide) hydrogels. Chinese J Chem Eng 2008; 16: 640-45. http://dx.doi.org/10.1016/S1004-9541(08)60134-2 DOI: https://doi.org/10.1016/S1004-9541(08)60134-2

Kumar A, Pandey M, Koshy MK, Shubhini AS. Synthesis of fast swelling superporous hydrogels: effect of concentration of crosslinker and acdisol on swelling ratio and mechanical strength. Int J Drug Del 2010; 2: 135-40. http://dx.doi.org/10.5138/ijdd.2010.0975.0215.02022 DOI: https://doi.org/10.5138/ijdd.2010.0975.0215.02022

Schott H. Swelling kinetics of polymers. J Macromol Sci Phys Part B 1992; 31: 1-9. http://dx.doi.org/10.1080/00222349208215453 DOI: https://doi.org/10.1080/00222349208215453

Jabbari F, Nozari S. Strain induced clustring in polyelectrolyte hydrogels. Eur Polym 2008; 36: 2685-92. http://dx.doi.org/10.1016/S0014-3057(00)00044-6 DOI: https://doi.org/10.1016/S0014-3057(00)00044-6

Houwei T, Yi Q, Xiaohua H, Yihua X, Hua Z, Peihu X, Filiang X. Study of the sigmoidal swelling kinetics of carboxymethyl chitosan-g-poly(acrylic acid) hydrogels intended for colon-specific drug delivery. Carbohydrate Polym 2010; 82: 440-45. http://dx.doi.org/10.1016/j.carbpol.2010.04.086 DOI: https://doi.org/10.1016/j.carbpol.2010.04.086

Omidian H, Park K. Swelling agents and devices in oral drug delivery. Crit Rev J Drug Del Sci Tech 2008; 18: 83-93. DOI: https://doi.org/10.1016/S1773-2247(08)50016-5

Langer R, Peppas NA. Advances in biomaterials. Drug Deliv Bionanotechnol AlChEJ 2003; 49: 2990-3006. http://dx.doi.org/10.1002/aic.690491202 DOI: https://doi.org/10.1002/aic.690491202

Khutoryanskiy VV, Dubolazov AV, Nurkeeva ZS, Mun GA. pH effects in complex formation and blending of poly (acrylic acid) with poly (ethylene oxide). Langmuir 2004; 20: 3785-90. http://dx.doi.org/10.1021/la049807l DOI: https://doi.org/10.1021/la049807l

Davidson III GWR, Peppas NA. Solute and Penetrant Diffusion in Swellable Polymers. V. Relaxation-Controlled Transport in P(HEMA-co-MMA) Copolymers. J Controlled Release 1986; 3: 243-58. http://dx.doi.org/10.1016/0168-3659(86)90096-9 DOI: https://doi.org/10.1016/0168-3659(86)90096-9

Tia Q, Zhao Z, Tang X, Zhang Y. Hydrophobic association and temperature and pH sensitivity of hydrophobically modified poly(n-isopropylacrylamide-co-acrylamide) gels. J Applied Polym Sci 2003; 87: 2406-13. http://dx.doi.org/10.1002/app.12122 DOI: https://doi.org/10.1002/app.12122

Geankoplis CJ. Transport process and unit operations. 3rd ed. Englewool Cliff, N.J: Perentice Hall 1993.

Vazquez NM, Antonio-Cruz RDC, Castillo AA, Mendoza-Martinez AM, Morales-Cepeda AB. Swelling kinetics of hydrogels from methyl cellulose and poly (acryl amide). Rev Max De-Eng Qui 2007; 6: 337-45.

Woerly S, Plant G, Harvey AR. cultured rat neuronal and glial cells entrapped within hydrogel polymer material: a potential tool for neutral tissue replacement. Neurosci Lett 1996; 205: 197-201. http://dx.doi.org/10.1016/0304-3940(96)12349-1 DOI: https://doi.org/10.1016/0304-3940(96)12349-1

Gudeman LF, Peppas NA. pH-Sensitive Membranes from Poly(vinyl alcohol)/Poly(acrylic acid) Interpenetrating Networks. J Membr Sci 1995; 107: 239-48. http://dx.doi.org/10.1016/0376-7388(95)00120-7 DOI: https://doi.org/10.1016/0376-7388(95)00120-7

Sezen Y, Hasan B. Swelling Behavior of Poly(2‐hydroxyethyl Methacrylate‐co‐acrylic Acid‐co‐ammonium Acrylate) Hydrogels. J Macromol Sci Part A: Pure and Applied Chemistry 2007; 44: 939-46. http://dx.doi.org/10.1080/10601320701424198 DOI: https://doi.org/10.1080/10601320701424198

Murali YM, Keshava PSM, Sudhakar H, Kumar NBV, Mohana RK, Padmanabha RM. Swelling and diffusion properties of poly(acrylamide-co-maleic acid) hydrogels: A study with different crosslinking agents. Int J Polym Mat 2006a; 55 : 1-23.

Murali YM, Sudhakar K, Keshava PSM, Mohana RK. Swelling properties of chemically cross linked poly(acrylamide-co-maleic acid) hydrogels. Int J Polym Mat 2006b; 55: 513-36. http://dx.doi.org/10.1080/00914030500208246 DOI: https://doi.org/10.1080/00914030500208246

Ortiz LE, Morals AB, Antonio R, Cruz AM, Sintesis Y. Caracrerizacion de hidrogeles obtenidos a partir de acrilamida y metilceluiosa. Revista Iberoamericana de Polimeros 2006; 7: 247-53.

Downloads

Published

2013-09-30

How to Cite

Zohra, R., Malana, M. A., & Iqbal, Z. (2013). Formulation, Characterization, Study of Swelling Kinetics and Network Parameters of Poly (MA-co-VA-co-AA) Terpolymeric Hydrogels with Various Concentrations of Acrylic Acid. Journal of Research Updates in Polymer Science, 2(3), 142–152. https://doi.org/10.6000/1929-5995.2013.02.03.1

Issue

Section

Articles