A Simple and Efficient Approach to Cellulose/Silica Composite Aerogel with High Silica Utilization Efficiency

Authors

  • Chong Lin Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, College of Materials and Chemical Engineering, Hainan University, 58 People's Road, Meilan District, Haikou, China
  • Ang Li Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, College of Materials and Chemical Engineering, Hainan University, 58 People's Road, Meilan District, Haikou, China
  • Yang Cao Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, College of Materials and Chemical Engineering, Hainan University, 58 People's Road, Meilan District, Haikou, China
  • Lingbin Lu Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, College of Materials and Chemical Engineering, Hainan University, 58 People's Road, Meilan District, Haikou, China

DOI:

https://doi.org/10.6000/1929-5995.2015.04.01.7

Keywords:

Cellulose, Silica, Aerogel, Dropwise, Utilization efficienc, Heat insulation.

Abstract

Cellulose aerogel is a fascinating material with high porosity, low density and biocompatibility. However, cellulose aerogel lacks sufficient thermal stability. Recombination between cellulose aerogel with silica is efficacious for enhance the cellulose aerogel’s thermal stability. This work described a simple and efficient approach to the cellulose/silica composite aerogel via a dropwise manner, using tetraethoxysilane as silicon source and NaOH solution as cellulose solvent. The result showed that the thermal stability of cellulose aerogel was enhanced by introducing silica. And by this manner, the utilization efficiency of silica was up to 95%. The composite aerogel had a low density and a high porosity, which promised the material a good heat insulation performance, and the thermal conductivity of the composite aerogel was low to 0.0161W/(m·K). Moreover, by adjusting cellulose concentration and tetraethoxysilane amount, the density, porosity and thermal conductivity of the composite aerogel could be controlled. This work contributed to improving the utilization efficiency of silica for the composite aerogel with better performances.

References

Kistler SS. Coherent Expanded Aerogels and Jellies. Nature 1931; 127: 741. http://dx.doi.org/10.1038/127741a0 DOI: https://doi.org/10.1038/127741a0

Kistler SS. Coherent expanded aerogels. J Phys Chem 1932; 36: 52-64. http://dx.doi.org/10.1021/j150331a003 DOI: https://doi.org/10.1021/j150331a003

Fischer F, Rigacci A, Pirard R, Berthon-Fabry S, Achard P. Cellulose-based aerogels. Polymer 2006; 47: 7636-45. http://dx.doi.org/10.1016/j.carbpol.2012.08.010 DOI: https://doi.org/10.1016/j.polymer.2006.09.004

Hoepfner S, Ratke L, Milow B. Synthesis and characterization of nanofibrillar cellulose aerogels. Cellulose 2008; 15: 121-9. http://dx.doi.org/10.1007/s10570-007-9146-8 DOI: https://doi.org/10.1007/s10570-007-9146-8

Li J, Lu Y, Yang D, Sun Q, Liu Y, Zhao H. Lignocellulose aerogel from woodionic liquid solution (1-allyl-3-methylimidazolium chloride) under freezing and thawing conditions. Biomacromolecules 2011; 12: 1860-7. http://dx.doi.org/10.1021/bm200205z DOI: https://doi.org/10.1021/bm200205z

Olsson RT, Azizi Samir MAS, Salazar-Alvarez G. Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates. Nature Nanotechnology 2010; 5: 584-8. http://dx.doi.org/10.1038/nnano.2010.155 DOI: https://doi.org/10.1038/nnano.2010.155

Kettunen M, Silvennoinen RJ, Houbenov N. Photoswitchable superabsorbency based on nanocellulose aerogels. Advanced Functional Materials 2011; 21: 510-7. http://dx.doi.org/10.1002/adfm.201001431 DOI: https://doi.org/10.1002/adfm.201001431

Liu S, Yu T, Hu N, Liu R, Liu X. High strength cellulose aerogels prepared by spatially confined synthesis of silica in

bioscaffolds. Colloids and Surfaces A: Physicochem Engineering Aspects 2013; 439: 159-66. http://dx.doi.org/10.1016/j.colsurfa.2012.11.020 DOI: https://doi.org/10.1016/j.colsurfa.2012.11.020

Gonçalves G, Marques PA, Trindade T, Neto CP, Gandini A. Superhydrophobic cellulose nanocomposites. Journal of Colloid Interface Science 2008; 324: 42-6. http://dx.doi.org/10.1016/j.jcis.2008.04.066 DOI: https://doi.org/10.1016/j.jcis.2008.04.066

Aljaberi A, Chatterji A, Shah NH. Functional performance of silicified microcrystalline cellulose versus microcrystalline cellulose: a case study. Drug Development and Industrial Pharmacy 2009; 35: 1066-71. http://dx.doi.org/10.1080/03639040902774131 DOI: https://doi.org/10.1080/03639040902774131

Shi J, Lu L, Guo W, Zhang J, Cao Y. Heat insulation performance, mechanics and hydrophobic modification of cellulose–SiO2 composite aerogels. Carbohydrate Polymers 2013; 98: 282-9. http://dx.doi.org/10.1016/j.carbpol.2013.05.082 DOI: https://doi.org/10.1016/j.carbpol.2013.05.082

Sinha RS, Mosto B. Biodegradable polymers and their layered silicate nanocomposites; In greening the 21st century materials world. Progress in Materials Science 2005; 50: 997-9. http://dx.doi.org/10.1016/j.pmatsci.2005.05.002 DOI: https://doi.org/10.1016/j.pmatsci.2005.05.002

Cai J, Liu S, Feng J, et al. Cellulose-silica nanocomposite aerogels by in situ formation of silica in cellulose gel. Angewandte Chemie International Edition 2012; 51: 2076-9. http://dx.doi.org/10.1002/anie.201105730 DOI: https://doi.org/10.1002/anie.201105730

Yano S, Maeda H, Nakajima M, Hagiwara T, Sawaguchi T. Preparation and mechanical properties of bacterial cellulose nanocomposites loaded with silica nanoparticles. Cellulose 2008; 15: 111-20. http://dx.doi.org/10.1007/s10570-007-9152-x DOI: https://doi.org/10.1007/s10570-007-9152-x

Wei TY, Lu SY, Chang YC. A new class of opacified monolithic aerogels of ultralow high-temperature thermal conductivities. Phys Chem Chem Phys 2009; 113: 7424-8. http://dx.doi.org/10.1021/jp900380q DOI: https://doi.org/10.1021/jp900380q

Merendith R. The mechanical properities of textile fibers. Chem Soc 1956; 43: 472.

Henning S, Svensson L. Production of silica aerogel. Physica Scripta 1981; 23: 697. http://dx.doi.org/10.1088/0031-8949/23/4B/018 DOI: https://doi.org/10.1088/0031-8949/23/4B/018

Downloads

Published

2015-04-17

How to Cite

Lin, C., Li, A., Cao, Y., & Lu, L. (2015). A Simple and Efficient Approach to Cellulose/Silica Composite Aerogel with High Silica Utilization Efficiency. Journal of Research Updates in Polymer Science, 4(1), 56–61. https://doi.org/10.6000/1929-5995.2015.04.01.7

Issue

Section

Articles