Carboxylated Magnetite Composite Polymer Nanoparticles with Mosaic Structure for Biomedical Application

Authors

  • Kesavarao Sykam Polymers & Functional Materials Division, Indian Institute of Chemical Technology, Hyderabad 500007, India
  • Shailaja Donempudi Polymers & Functional Materials Division, Indian Institute of Chemical Technology, Hyderabad 500007, India

DOI:

https://doi.org/10.6000/1929-5995.2015.04.02.5

Keywords:

Microemulsion, magnetic nanoparticle supports, protein separation

Abstract

In this article, a microemulsion method for preparation of magnetite composite polymer nanoparticles of Fe3O4@poly(styrene-methacrylic acid) (MNP@PSMA) crosslinked with1,6-hexanediol diacrylate (HDD) insitu with carboxyl functionality on the surface has been reported. Structure and morphology of the nanoparticles was studied by Fourier Transform Infrared spctroscopy (FTIR), X ray Diffraction (XRD), Thermal Gravimetric Analyser (TGA), Vibrating Sample Magnetometer (VSM) and Transmission Electron Microscopy (TEM). VSM studies confirmed saturation magnetization of 20.0 emu/g in an external magnetic field. Nanoparticles formed were of 30 nm in diameter with narrow size distribution and mosaic structure providing a large surface area useful for application in bioseparation. Experimental results of covalent coupling of composite nanoparticles indicated maximum protein binding capacity of 350 mg bovine serum albumin (BSA) per gram.

References

Pankhurst Q, Connolly J, Jones S, Dobson J. Applications of magnetic nanoparticles in biomedicine. J Phys D: Appl Phys 2003; 36: 167-81. http://dx.doi.org/10.1088/0022-3727/36/13/201 DOI: https://doi.org/10.1088/0022-3727/36/13/201

Zhang F, Jun J, Xing Z, et al. Pd immobilized on amine-functionalized magnetite nanoparticles: a novel and highly active catalyst for hydrogenation and Heck reactions. Green Chemistry 2011; 5: 1238-43. http://dx.doi.org/10.1039/c0gc00854k DOI: https://doi.org/10.1039/c0gc00854k

Ranjbakhsh E, Bordbar AK, Abbasi M, Khosropour AR, Shams E. Enhancement of stability and catalytic activity of immobilized lipase on silica-coated modified magnetite nanoparticles. Chemical Engineering Journal 2012; 179: 272-6. http://dx.doi.org/10.1016/j.cej.2011.10.097 DOI: https://doi.org/10.1016/j.cej.2011.10.097

Zhang Y, Sichao X, Yuanyuan L, et al. Synthesis of mesoporous carbon capsules encapsulated with magnetite nanoparticles and their application in wastewater treatment. Journal of Materials Chemistry 2011; 11: 3664-71. http://dx.doi.org/10.1039/c0jm03727c DOI: https://doi.org/10.1039/c0jm03727c

Piao X, Guang MZ, Dan LH, et al. Use of iron oxide nanomaterials in wastewater treatment: a review. Science of the Total Environment 2012; 424: 1-10. http://dx.doi.org/10.1016/j.scitotenv.2012.02.023 DOI: https://doi.org/10.1016/j.scitotenv.2012.02.023

Tartaj P, Morales M, Veintemillas VS, Gonzalez CT, Serna C. The preparation of magnetic nanoparticles for applications in biomedicine. J Phys D: Appl Phys 2003; 36: 182-97. http://dx.doi.org/10.1088/0022-3727/36/13/202 DOI: https://doi.org/10.1088/0022-3727/36/13/202

Liu G, Zhiyong W, Jian L, et al. Low molecular weight alkyl-polycation wrapped magnetite nanoparticle clusters as MRI probes for stem cell labelling and in vivo imaging. Biomaterials 2011; 32: 528-37. http://dx.doi.org/10.1016/j.biomaterials.2010.08.099 DOI: https://doi.org/10.1016/j.biomaterials.2010.08.099

Lee JH, Huh YM, Jun Y, et al. Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. J Nat Med 2007; 13: 95-9. http://dx.doi.org/10.1038/nm1467 DOI: https://doi.org/10.1038/nm1467

Schmieder AH, Winter PM, Caruthers SD, et al. Molecular MR imaging of melanoma angiogenesis with anb3-targeted paramagnetic nanoparticles. Magn Reson Med 2005; 53: 621-7. http://dx.doi.org/10.1002/mrm.20391 DOI: https://doi.org/10.1002/mrm.20391

Nakamae K, Tanigawa S, Tsujiguchi T, Okamoto S, Yamaguchi K. Solvent effect on adsorption of polymers on γ-Fe2O3 particles. Coll Surf A 1993; 80-5. DOI: https://doi.org/10.1016/0927-7757(93)80227-6

Liu X, Guan Z, Liu H, et al. Preparation and characterization of magnetic polymer nanospheres with high protein binding capacity. J Magn Magn Mater 2005; 293: 111-8. http://dx.doi.org/10.1016/j.jmmm.2005.01.051 DOI: https://doi.org/10.1016/j.jmmm.2005.01.051

Harris LA, Goff JD, Carmichael AZ, et al. Magnetite nanoparticle dispersions stabilized with triblock copolymers. Chem Mater 2003; 15: 1367-77. http://dx.doi.org/10.1021/cm020994n DOI: https://doi.org/10.1021/cm020994n

Alexiou C, Arnold W, Hulin P, et al. Magnetic mitoxantrone nanoparticle detection by histology, X-ray and MRI after magnetic tumor targeting. J Magn Magn Mater 2001; 225: 187-93. http://dx.doi.org/10.1016/S0304-8853(00)01256-7 DOI: https://doi.org/10.1016/S0304-8853(00)01256-7

Bergemann C, Miiller SD, Oster J, Brassard L, Ans L. Magnetic ion-exchange nano-and microparticles for medical, biochemical and molecular biological applications. J Magn Magn Mater 1999; 194: 45-54. http://dx.doi.org/10.1016/S0304-8853(98)00554-X DOI: https://doi.org/10.1016/S0304-8853(98)00554-X

Goetze T, Gansau C, Buske N, et al. Photoacoustic spectroscopy of magnetic fluids. J Magn Magn Mater 2002; 252: 56-58. http://dx.doi.org/10.1016/S0304-8853(02)00685-6 DOI: https://doi.org/10.1016/S0304-8853(02)00685-6

Hyeon T, Lee SS, Park J, Chung Y, Na HB. Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. J Am Chem Soc 2001; 123: 12798-801. http://dx.doi.org/10.1021/ja016812s DOI: https://doi.org/10.1021/ja016812s

Suslick KS, Fang M, Hyeon T. Sonochemical Synthesis of Iron Colloids. J Am Chem Soc 1996; 118: 11960-1. http://dx.doi.org/10.1021/ja961807n DOI: https://doi.org/10.1021/ja961807n

Xu Z, Liu Q, Finch JA. Silanation and stability of 3-aminopropyl triethoxysilane on nanosized super paramagnetic particles. Appl Surf Scl 1997; 120: 269-78. http://dx.doi.org/10.1016/S0169-4332(97)00234-1 DOI: https://doi.org/10.1016/S0169-4332(97)00234-1

Donselaar LN, Philipse AP, Suurmond J. Concentration-dependent sedimentation of dilute magnetic fluids and magnetic silica dispersions. Langmuir 1997; 13: 6018-25. http://dx.doi.org/10.1021/la970359+ DOI: https://doi.org/10.1021/la970359+

Liu Q, Xu Z, Finch JA, Egerton R. A novel two-step silica-coating process for engineering magnetic nanocomposites. Chem Mater 1998; 10: 3936-40. http://dx.doi.org/10.1021/cm980370a DOI: https://doi.org/10.1021/cm980370a

Klotz M, Ayral A, Guizard C, Menager C, Cabuil V. Silica coating on colloidal maghemite particles. J Coll Int Sci 1999; 220: 357-61. http://dx.doi.org/10.1006/jcis.1999.6517 DOI: https://doi.org/10.1006/jcis.1999.6517

Lu Y, Yin Y, Mayers BT, Xia Y. Modifying the surface properties of super paramagnetic iron oxide nanoparticles through a sol-gel approach. Nano Lett 2002; 2: 183-6. http://dx.doi.org/10.1021/nl015681q DOI: https://doi.org/10.1021/nl015681q

Seip CT, O'Connor CJ. Synthesis and reactivity of nanophase ferrites in reverse micellar solutions. Nanostruct Mater 1999; 12: 183-6. http://dx.doi.org/10.1016/S0965-9773(99)00094-X DOI: https://doi.org/10.1016/S0965-9773(99)00067-7

Cho SJ, Kauzlarich SM, Olamit J, et al. Characterization and magnetic properties of core/shell structured Fe/Au nanoparticles. J Appl Phys 2004; 95: 6804-06. http://dx.doi.org/10.1063/1.1676033 DOI: https://doi.org/10.1063/1.1676033

Chen M, Yamamuro S, Farrell D, Majetich SA. Gold-coated iron nanoparticles for biomedical applications. Appl Phys 2003; 93: 7551-3. http://dx.doi.org/10.1063/1.1555312 DOI: https://doi.org/10.1063/1.1555312

Pei L, Jianjun X, Qun W, Chi W. Surface functionalization of polymer latex particles: 4. Tailor-making of aldehyde-functional poly (methylstyrene) latexes in an emulsifier-free system. Langmuir 2000; 16: 4141-7. http://dx.doi.org/10.1021/la9912949 DOI: https://doi.org/10.1021/la9912949

Liua ZL, Dinga ZH, Yaoa KL, et al. Preparation and characterization of polymer-coated core-shell structured magnetic microbeads. J Magn Magn Mater 2003; 265: 98-105. http://dx.doi.org/10.1016/S0304-8853(03)00230-0 DOI: https://doi.org/10.1016/S0304-8853(03)00230-0

Elizabeth RB, Iva P, Ana MF, Helena SA, Rui LR. Synthesis and functionalization of super paramagnetic poly-ɛ-caprolactone microparticles for the selective isolation of sub populations of human adipose-derived stem cells. J R Soc Interface 2011; 8: 896-908. http://dx.doi.org/10.1098/rsif.2010.0531 DOI: https://doi.org/10.1098/rsif.2010.0531

Ruixue L, Shumei L, Jianqing Z, Hideyuki O, Atsushi T. Preparation of super paramagnetic b-cyclodextrin functionalized composite nanoparticles with core-shell structures. Polym Bull 2011; 66: 1125-36. http://dx.doi.org/10.1007/s00289-010-0410-y DOI: https://doi.org/10.1007/s00289-010-0410-y

Dong GL, Kanagasabai MP, Mir K, et al. Immobilization of lipase on hydrophobic nano-sized magnetite particles. J Mol Catal B: Enzym 2009; 57: 62-6. http://dx.doi.org/10.1016/j.molcatb.2008.06.017 DOI: https://doi.org/10.1016/j.molcatb.2008.06.017

Downloads

Published

2015-07-28

How to Cite

Sykam, K., & Donempudi, S. (2015). Carboxylated Magnetite Composite Polymer Nanoparticles with Mosaic Structure for Biomedical Application. Journal of Research Updates in Polymer Science, 4(2), 127–133. https://doi.org/10.6000/1929-5995.2015.04.02.5

Issue

Section

Articles