Assembly of Ordered Polystyrene Nanoparticles on Self-Assembled Monolayers

Authors

  • Ortal Lidor Shalev Department of Chemistry, Bar-Ilan Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat Gan, 5290002, Israel
  • Hagit Hagit Department of Chemistry, Bar-Ilan Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat Gan, 5290002, Israel
  • Yitzhak Mastai Department of Chemistry, Bar-Ilan Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat Gan, 5290002, Israel

DOI:

https://doi.org/10.6000/1929-5995.2015.04.04.5

Keywords:

Self-assembled monolayer, Polymeric nanoparticles, Spontaneous arrangement, Polystyrene, Surface chemistry, Janus particles.

Abstract

Spontaneous assembly of nanoparticles onto a surface is a promising bottom-up concept for the fabrication of new functional materials that can be used for various applications in the nanotechnology. In this paper, we describe a system based on gold/polystyrene (Au/PS) Janus particles arranged onto Au self-assembled monolayer (SAM) of 1-dodecanthiol (NDA). The micro-size Au/PS Janus particles are self-assembled onto Au surface and are dissolved into polystyrene (PS) nanoparticles. The SAM of NDA plays two different roles; it dissolves the original Au/PS Janus particles and organizes the PS nanoparticles onto the Au surface. Overall, our proposed method for the assembly of large-scale area nanoparticles can be extended for further uses in the surface science.

References

Reetz MT. Biocatalysis in organic chemistry and biotechnology: past, present, and future. J Am Chem Soc 2013; 135: 12480-96. http://dx.doi.org/10.1021/ja405051f DOI: https://doi.org/10.1021/ja405051f

Martin CA, Ding D, Sørensen JK, Bjørnholm T, Van Ruitenbeek JM, Van Der Zant HSJ. Fullerene-based anchoring groups for molecular electronics. J Am Chem Soc 2008; 130: 13198-9. http://dx.doi.org/10.1021/ja804699a DOI: https://doi.org/10.1021/ja804699a

Zhong Y, Kumar B, Oh S, et al. Helical ribbons for molecular electronics. J Am Chem Soc 2014; 136: 8122-30. http://dx.doi.org/10.1021/ja503533y DOI: https://doi.org/10.1021/ja503533y

Lohse SE, Murphy CJ. Applications of colloidal inorganic nanoparticles: from medicine to energy. J Am Chem Soc 2012; 134: 15607-20. http://dx.doi.org/10.1021/ja307589n DOI: https://doi.org/10.1021/ja307589n

Grzelczak M, Vermant J, Furst EM, Liz-Marzán LM. Directed self-assembly of nanoparticles. ACS Nano 2010; 4: 3591-605. http://dx.doi.org/10.1021/nn100869j

Mendes PM, Jacke S, Critchley K, et al. Gold nanoparticle patterning of silicon wafers using chemical E-beam lithography. Langmuir 2004; 20: 3766-8. http://dx.doi.org/10.1021/la049803g DOI: https://doi.org/10.1021/la049803g

Black CT. Polymer self-assembly as a novel extension to optical lithography. ACS Nano 2007; 1: 147-50. http://dx.doi.org/10.1021/nn7002663 DOI: https://doi.org/10.1021/nn7002663

Mizuno H, Buriak JM. Catalytic stamp lithography for sub-100 Nm patterning of organic monolayers. J Am Chem Soc 2008; 130: 17656-7. http://dx.doi.org/10.1021/ja807708r DOI: https://doi.org/10.1021/ja807708r

Su M, Liu X, Li S, Dravid VP, Mirkin CA. Moving beyond molecules: patterning solid-state features via dip-pen nanolithography with sol-based inks. J Am Chem Soc 2002; 124: 1560-1. http://dx.doi.org/10.1021/ja012502y DOI: https://doi.org/10.1021/ja012502y

Hua F, Shi J, Lvov Y, Cui T. Patterning of layer-by-layer self-assembled multiple types of nanoparticle thin films by lithographic technique. Nano Lett 2002; 2: 1219-22. http://dx.doi.org/10.1021/nl0257521 DOI: https://doi.org/10.1021/nl0257521

Maury P, Reinhoudt D, Huskens J. Assembly of Nanoparticles on Patterned Surfaces by Noncovalent Interactions. Curr Opin Colloid Interface Sci 2008; 13: 74-80. http://dx.doi.org/10.1016/j.cocis.2007.08.013 DOI: https://doi.org/10.1016/j.cocis.2007.08.013

Xu H, Hong R, Wang X, et al. Controlled formation of patterned gold films via site-selective deposition of nanoparticles onto polymer-templated surfaces. Adv Mater 2007; 19: 1383-6. http://dx.doi.org/10.1002/adma.200700124 DOI: https://doi.org/10.1002/adma.200700124

Ulman A. Formation and structure of self-assembled monolayers. Chem Rev 1996; 96: 1533-54. http://dx.doi.org/10.1021/cr9502357 DOI: https://doi.org/10.1021/cr9502357

Grzelczak M, Vermant J, Furst EM, Liz-Marzán LM. Directed self-assembly of nanoparticles. ACS Nano 2010; 4: 3591-605. http://dx.doi.org/10.1021/nn100869j DOI: https://doi.org/10.1021/nn100869j

Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM. Self-assembled monolayers of thiolates on methals as a form of nanotechnology. Chem Rev 2005; 105: 1103-69. http://dx.doi.org/10.1021/cr0300789 DOI: https://doi.org/10.1021/cr0300789

Chiu JJ, Kim BJ, Kramer EJ, Pine DJ. Control of nanoparticle location in block copolymers. J Am Chem Soc 2005; 127: 5036-7. http://dx.doi.org/10.1021/ja050376i DOI: https://doi.org/10.1021/ja050376i

Smith L. Biomineralization: principles and concepts in bioinorganic materials. Cryst Growth Des 2002; 42: 675-6.

Freeman RG, Grabar KC, Allison KJ, et al. Self-assembled metal colloid monolayers: an approach to SERS substrates. Science 1995; 267: 1629-32. http://dx.doi.org/10.1126/science.267.5204.1629 DOI: https://doi.org/10.1126/science.267.5204.1629

Zhang L, Chan JM, Gu FX, et al. Self-assembled lipid polymer hybrid nanoparticles: a robust drug delivery platform. ACS Nano 2008; 2: 1696-702. http://dx.doi.org/10.1021/nn800275r DOI: https://doi.org/10.1021/nn800275r

Yip HL, Hau SK, Baek NS, Ma H, Jen AK. Polymer solar cells that use self-assembled-monolayer-modified ZnO/metals as cathodes. Adv Mater 2008; 20: 2376-82. http://dx.doi.org/10.1002/adma.200703050 DOI: https://doi.org/10.1002/adma.200703050

Hu J, Zhou S, Sun Y, Fang X, Wu L. Fabrication, properties and applications of Janus particles. Chem Soc Rev 2012; 41: 4356-78. http://dx.doi.org/10.1039/c2cs35032g DOI: https://doi.org/10.1039/c2cs35032g

Xing H, Wang Z, Xu Z, et al. DNA-directed assembly of asymmetric nanoclusters using Janus nanoparticles. ACS Nano 2012; 6: 802-9. http://dx.doi.org/10.1021/nn2042797 DOI: https://doi.org/10.1021/nn2042797

Tang C, Zhang C, Liu J, Qu X, Li J, Yang Z. Large scale synthesis of Janus submicrometer sized colloids by seeded emulsion polymerization. Macromolecules 2010; 43: 5114-20. http://dx.doi.org/10.1021/ma100437t DOI: https://doi.org/10.1021/ma100437t

Song Y, Liu K, Chen S. AgAu bimetallic Janus nanoparticles and their electrocatalytic activity for oxygen reduction in alkaline media. Langmuir 2012; 28: 17143-52. http://dx.doi.org/10.1021/la303513x DOI: https://doi.org/10.1021/la303513x

Bao H, Butz B, Zhou Z, Spiecker E, Hartmann M, Taylor RN. Silver-assisted colloidal synthesis of stable, plasmon resonant gold patches on silica nanospheres. Langmuir 2012; 28: 8971-8. http://dx.doi.org/10.1021/la204762z DOI: https://doi.org/10.1021/la204762z

Xu H, Liu X, Su G, Zhang B, Wang D. Electrostatic repulsion-controlled formation of polydopamine − gold Janus particles. Langmuir 2012; 28: 13060-65. http://dx.doi.org/10.1021/la302394e DOI: https://doi.org/10.1021/la302394e

Zhang X, Shi F, Niu J, Jiang Y, Wang Z. Superhydrophobic surfaces: from structural control to functional application. J Mater Chem 2008; 18: 621-33. http://dx.doi.org/10.1039/B711226B DOI: https://doi.org/10.1039/B711226B

Nakajima A, Hashimoto K, Watanabe T. Recent studies on super-hydrophobic films. Monatshefte fur Chemie 2001; 132: 31-41. http://dx.doi.org/10.1007/s007060170142 DOI: https://doi.org/10.1007/s007060170142

Ober CK, Lok KA, Hair ML. Monodispersed, micron-sized polystyrene particles by dispersion polymerization. J Polym Sci 1985; 23: 103-8. http://dx.doi.org/10.1002/pol.1985.130230209 DOI: https://doi.org/10.1002/pol.1985.130230209

Bamnolker H, Margel S. Dispersion polymerization of styrene in polar solvents: effect of reaction parameters on microsphere surface composition and surface properties, size and size distribution, and molecular weight. Polym Chem 1996; 34: 1857-71. http://dx.doi.org/10.1002/(SICI)1099-0518(19960730)34:10<1857::AID-POLA3>3.0.CO;2-M DOI: https://doi.org/10.1002/(SICI)1099-0518(19960730)34:10<1857::AID-POLA3>3.0.CO;2-M

Khanh NN, Yoon KB. Facile organization of colloidal particles into large, perfect one- and two-dimensional arrays by dry manual assembly on patterned substrates. J Am Chem Soc 2009; 131: 14228-30. http://dx.doi.org/10.1021/ja905534k DOI: https://doi.org/10.1021/ja905534k

Zhang J, Sun Z, Yang B. Self-assembly of photonic crystals from polymer colloids. Colloid Interface Sci 2009; 14: 103-14. http://dx.doi.org/10.1016/j.cocis.2008.09.001 DOI: https://doi.org/10.1016/j.cocis.2008.09.001

Anastasiadis SH. Development of functional polymer surfaces with controlled wettability. Langmuir 2013; 29: 9277-90. http://dx.doi.org/10.1021/la400533u DOI: https://doi.org/10.1021/la400533u

Guo Z, Zhou F, Hao J, Liu W. Stable biomimetic super-hydrophobic engineering materials. J Am Chem Soc 2005; 127: 15670-1. http://dx.doi.org/10.1021/ja0547836 DOI: https://doi.org/10.1021/ja0547836

Extrand CW, Moon SI. Contact angles of liquid drops on super hydrophobic surfaces: Understanding the role of flattening of drops by gravity. Langmuir 2010; 26: 17090-9. http://dx.doi.org/10.1021/la102566c DOI: https://doi.org/10.1021/la102566c

Mohammadi R, Wassink J, Amirfazli A. Effect of surfactants on wetting of super-hydrophobic surfaces. Langmuir 2004; 20: 9657-62. http://dx.doi.org/10.1021/la049268k DOI: https://doi.org/10.1021/la049268k

Botelho do Rego AM, Vilar MR, Lopes da Silva J. Mechanisms of vibrational and electronic excitations of polystyrene films in high resolution electron energy loss spectroscopy. J Electron Spectros Relat Phenomena 1997; 85: 81-91. http://dx.doi.org/10.1016/S0368-2048(97)00023-6 DOI: https://doi.org/10.1016/S0368-2048(97)00023-6

Downloads

Published

2016-01-11

How to Cite

Shalev, O. L., Hagit, H., & Mastai, Y. (2016). Assembly of Ordered Polystyrene Nanoparticles on Self-Assembled Monolayers . Journal of Research Updates in Polymer Science, 4(4), 202–209. https://doi.org/10.6000/1929-5995.2015.04.04.5

Issue

Section

Articles