Physical Properties of Polyacrylamide/Polyvinylalcohol Silica Nanocomposites

Authors

  • Dalia E. Abulyazied Egyptian Petroleum Research Institute, Petrochemical Department, Polymer Lab, Nasr City, Cairo, Egypt
  • Nahla A. Mansour Egyptian Petroleum Research Institute, Petrochemical Department, Polymer Lab, Nasr City, Cairo, Egypt
  • Azza M. Mazrouaa Egyptian Petroleum Research Institute, Petrochemical Department, Polymer Lab, Nasr City, Cairo, Egypt
  • Manal G. Mohamed Egyptian Petroleum Research Institute, Petrochemical Department, Polymer Lab, Nasr City, Cairo, Egypt

DOI:

https://doi.org/10.6000/1929-5995.2016.05.01.2

Keywords:

Polyacrylamide (PAAm), Polyvinylalcohol (PVA), Nanosilica SiO2, Blend, Thermal stability TGA and Electrical conductivity

Abstract

In this paper, samples of Polyacrylamide (PAAm) nanosilica nanocomposites were prepared having different concentration of nanosilica (0.125, 0.25, and 0.5). Polyacrylamide (PAAm) and poly (vinyl alcohol) (PVA) were blended with different ratio (3/1, 1/1, 1/3) using solution-cast technique. The prepared films were characterized by Fourier transform infrared (FTIR), X-ray diffractions (XRD) and scanning electron microscopy (SEM). FTIR spectra showed the presence of hydrogen bonding between–CONH2 groups in PAAm and –OH group in PVA and confirm the hydrophilic nature of the blends. X-ray diffractions shows the presence of a strong broad peak centered at 22º (2θ) confirms the amorphous nature of silica which is supposed to be the characteristic of SiO2. The results obtained from different experimental techniques were supported by SEM image analysis. The thermal stability of the nanocomposites enhanced by increasing the silica content in the blend. The DC electrical conductivity was studied for all prepared samples. It was found that the conductivity increase by increasing silica content as well as, increased by increasing the wt% of PVA.

References

Devendral K, Rangaswamy T. Evaluation of thermal properties of E-Glass/Epoxy Composites filled by different filler materials. IJCER 2012; 2: 1708-14.

Vinod VS, Varghese S, Alex R, Kuriakose B. Effect of aluminum powder on filled natural rubber composites. Rubber Chem Technol 2000; 74: 236-48. http://dx.doi.org/10.5254/1.3544947 DOI: https://doi.org/10.5254/1.3544947

Hashim A, Husaien M, Ghazi JH, Hakim H. Characterization of (polyvinyl alcohol – polyacrylamide –pomegranate peel) composite so as biocomposites materials. Universal J Phys Appl 2013; 1: 242-4. DOI: https://doi.org/10.13189/ujpa.2013.010304

Zikry AAF. Dielectric behavior of silica/polyacrylamide nanocomposites. Int J Polym Mater 2008; 57: 383-95. http://dx.doi.org/10.1080/00914030701729057 DOI: https://doi.org/10.1080/00914030701729057

Jia X, Li Y, Cheng Q, Zhang S, Zhang B. Preparation and properties of poly(vinyl alcohol)/silica nanocomposites derived from copolymerization of vinyl silica nanoparticles and vinyl acetate. Eur Polym J 2007; 43: 1123-31. http://dx.doi.org/10.1016/j.eurpolymj.2007.01.019 DOI: https://doi.org/10.1016/j.eurpolymj.2007.01.019

Wu Y, Wu C, Li Y, Xu T, Fu Y. PVA–silica anion-exchange hybrid membranes prepared through a copolymer crosslinking agent. J Membr Sci 2010; 350: 322-32. http://dx.doi.org/10.1016/j.memsci.2010.01.007 DOI: https://doi.org/10.1016/j.memsci.2010.01.007

Xie Z, Hoang M, Duong T, Ng D, Dao B, Gray S. Sol–gel derived poly(vinyl alcohol)/maleic acid/silica hybrid membrane for desalination by pervaporation. J Membr Sci 2011; 383: 96-103. http://dx.doi.org/10.1016/j.memsci.2011.08.036 DOI: https://doi.org/10.1016/j.memsci.2011.08.036

Shen YD, Zhao YN, Li XR. Polyacrylate/silica hybrids prepared by emulsifier-free emulsion polymerization and the sol–gel process. Polym Bull 2009; 63: 687-98. http://dx.doi.org/10.1007/s00289-009-0117-0 DOI: https://doi.org/10.1007/s00289-009-0117-0

Zulfikar MA, Mohammad AW, Kadhum AA, Hilal N. Synthesis and characterization of poly(methyl methacrylate)/SiO2 hybrid membrane. Materials Science and Engineering: A 2007; 452. http://dx.doi.org/10.1016/j.msea.2006.10.147 DOI: https://doi.org/10.1016/j.msea.2006.10.147

Irani M, Keshtkar AR, Mousavian MA. Removal of Cd(II) and Ni(II) from aqueous solution by PVA/TEOS/TMPTMS hybrid membrane. Chem Eng J 2011; 175: 251-9. http://dx.doi.org/10.1016/j.cej.2011.09.102 DOI: https://doi.org/10.1016/j.cej.2011.09.102

Razavi S, Sabetghadam A, Mohammadi T. Dehydration of isopropanol by PVA–APTEOS/TEOS nanocomposite membranes. Chem Eng Res Des 2011; 89: 148-55. http://dx.doi.org/10.1016/j.cherd.2010.06.004 DOI: https://doi.org/10.1016/j.cherd.2010.06.004

Zhao Y-N. Preparation of poly(vinyl alcohol)/silica nanocomposties by sol-gel method. e-Polymer 2013; 13: 115-23. DOI: https://doi.org/10.1515/epoly-2013-0111

Bhattacharya M, Chaudhry S. High-performance silica nanoparticle reinforced poly (vinyl alcohol) as templates for bioactive nanocomposites. Mater Sci Eng C Mater Biol Appl 2013; 33: 2601-10. http://dx.doi.org/10.1016/j.msec.2013.02.029 DOI: https://doi.org/10.1016/j.msec.2013.02.029

Coleman MM. Specific interactions and miscibility of polymer blends. Technomic 1991; 20.

Abdel Kader FH, Shehao AM, Aboellil MS, Mahmood KH. Dielectric relaxation and a.c. conductivity of polyvinyl alcohol /sodium carboxy methyl cellulose and their blends. J Polym Mater Sci 2005; 22: 349-62.

Tanwar A, Gupta KK, Singh PJ, Vijay YK. Dielectric parameters and ac conductivity of pure and doped poly(mehyl methacrylate) films at microwave frequencies. Bull Mater Sci 2006; 29: 397-401. http://dx.doi.org/10.1007/BF02704142 DOI: https://doi.org/10.1007/BF02704142

Jones AA. Molecular level model for motion and relaxation in glassy polycarbonate. Macromolecules 1985; 18: 1902. http://dx.doi.org/10.1021/ma00147a014 DOI: https://doi.org/10.1021/ma00147a014

O’Gara JF, Jones AA, Hung CC, Inglefield PT. Temperature dependence of local motions in glassy polycarbonate from carbon and proton nuclear magnetic resonance. Macromolecules 1985; 18: 1117-23. DOI: https://doi.org/10.1021/ma00148a012

Tormalla PJ. Spin Label and Probe Studies of Polymeric Solids and Melts. Macro Sci Rev Macro Chem 1979; C17: 297. http://dx.doi.org/10.1080/00222357908080913 DOI: https://doi.org/10.1080/00222357908080913

Rao KVS, Rao SS, Rao SUV. Thermally stimulated discharge current studies in thin films of polyacrylamide. Crystal Res Technol 1992; 27: 875-81. DOI: https://doi.org/10.1002/crat.2170270625

Rao SS, Rao KVS, Shareefuddin Md, Chary MN, Reddy KN, Rao UVS. Electrical conduction in a polyblend of polyvinyl pyrrolidone and polyacrylamide. Crystal Res Technol 1992; 27: 973-9. DOI: https://doi.org/10.1002/crat.2170270718

Satyanarayana RKV, Subba Rao UV, Narasimha RVV. Electrical conduction mechanism in polyacrylamide films. J Materials Science Letters 1990; 9: 3-4. http://dx.doi.org/10.1007/BF00722850 DOI: https://doi.org/10.1007/BF00722850

Ikezaki K. Materials Research Society 2001; 223-8522.

Rao VVRN, Krishna KJ, Rao BS, Thermally stimulated depolarization currents in poly(vinyl alcohol) films. Acta Polymerica 1992; 43: 68-71. DOI: https://doi.org/10.1002/actp.1992.010430202

Prasad KR. Determination of the trapping parameters of TL glow curves of polyacrylamide (PAAM)-polyvinylalcohol (PVA) polyblends by employing computer simulation. Int J Sci Eng Technol 2012; 1: 301-5.

Demchenko O, Zheltonozhskaya T, Guenet JM, Filipchenko S, Syromyatnikov V. Properties of poly(vinyl alcohol)-graft-polyacrylamide copolymers depending on the graft length. 2. Thermal properties in the bulk state. Macromol Symp 2003; 203: 183-92. DOI: https://doi.org/10.1002/masy.200351317

Goyal A, Kunio H, Hidehiko O, Mandula. Properties and Reactivity of Sugarcane Bagasse ash. http://soil.en.a.utokyo. ac.jp/jsidre/search/PDFs/07/07006-35.pdf, 2007.

Hariharan V, Sivakumar G. Studies on synthesized nanosilica obtained from bagasse ash. Int J Chem Tech Res 2013; 5: 1263-6.

Sivakumar G, Amutha K. Studies on Silica Obtained from Cow Dung Ash. Advanced Materials Research 2012; 584: 470-473. http://dx.doi.org/10.4028/www.scientific.net/AMR.584.470 DOI: https://doi.org/10.4028/www.scientific.net/AMR.584.470

Chen CH, Wang FY, Mao CF, Liao WT, Hsieh CD. Studies of chitosan: II. Preparation and characterization of chitosan/poly(vinyl alcohol)/gelatin ternary blend films. Int J Biol Macromol 2008; 43: 37-42. http://dx.doi.org/10.1016/j.ijbiomac.2007.09.005 DOI: https://doi.org/10.1016/j.ijbiomac.2007.09.005

Patel G, Sureshkumar MB. Preparation of PAM/PVA blending films by solution cast technique and its characterization: a spectroscopic study. Iranian Polym J 2014; 23: 153-62. DOI: https://doi.org/10.1007/s13726-013-0211-x

Tokarev I, Tokareva I, Minko S. Gold-Nanoparticle-Enhanced Plasmonic Effects in a Responsive Polymer Gel. Adv Mater 2008; 20: 2730-2734. http://dx.doi.org/10.1002/adma.200702885 DOI: https://doi.org/10.1002/adma.200702885

Xiang Y, Chen D. Preparation of a novel pH-responsive silver nanoparticle/poly(HEMA–PEGMA–MAA) composite hydrogel. Eur Polym J 2007; 43: 4178-4187. http://dx.doi.org/10.1016/j.eurpolymj.2007.08.005 DOI: https://doi.org/10.1016/j.eurpolymj.2007.08.005

Xia HS, Wang Q. Preparation of conductive polyaniline/nanosilica particle composites through ultrasonic irradiation. J Appl Polym Sci 2003; 87: 1811-1817. http://dx.doi.org/10.1002/app.11627 DOI: https://doi.org/10.1002/app.11627

Bershtein VA, Egorova LM, Yakushev PN, Pissis P, Sysel P, Brozova L. Molecular dynamics in nanostructured polyimide–silica hybrid materials and their thermal stability. J Polym Sci Part B Polym Phys 2002; 40: 1056-69. DOI: https://doi.org/10.1002/polb.10162

Zhu D, Wei L, Wang B, Feng Y. Aqueous Hybrids of Silica Nanoparticles and Hydrophobically Associating Hydrolyzed Polyacrylamide Used for EOR in High-Temperature and High-Salinity Reservoirs. Energies 2014; 7: 3858-3871. http://dx.doi.org/10.3390/en7063858 DOI: https://doi.org/10.3390/en7063858

El-Kader FH, Gafer SA, Basha AF, Bannan SI, Basha MAF. Thermal and optical properties or gelatin / poly (vinyl alcohol) blends. J Appl Polym Sci 2010; 118: 413-20. DOI: https://doi.org/10.1002/app.30841

Aggour YA. Thermal degradation studies of poly(ethylene glycol allenyl-methyl ether)s and their copolymers with styrene. Polym Degrad Stab 1996; 51: 265-269. http://dx.doi.org/10.1016/0141-3910(95)00205-7 DOI: https://doi.org/10.1016/0141-3910(95)00205-7

Motawie AM, Madany MM, El-Dakrory AZ, Osman HM, Ismail EA, Badr MM, Abulyazied DE. Electrophysical characteristics of polyurethane/organo-bentonite nanocomposites. Egyptian Journal of Petroleum (EGYJP) 2014; 23; 379-387. http://dx.doi.org/10.1016/j.ejpe.2014.09.005 DOI: https://doi.org/10.1016/j.ejpe.2014.09.005

Ou YC, Yu ZZ, Vidal A, Donnet JB. Effects of alkylation of silica filler on rubber reinforcement. Rubb Chem Tech 1994; 67: 834-44. DOI: https://doi.org/10.5254/1.3538714

Madani M. Effect of silica type and concentrations on the physical properties of EPDM cured by γ – irradiation. Mol Phys 2008; 106: 849-57. DOI: https://doi.org/10.1080/00268970801980484

Leroux C, Mur P, Rochat N, et al. Characterization and modeling of nanometric SiO2 dielectrics. Microelectron Eng 2004; 72: 121-4. DOI: https://doi.org/10.1016/j.mee.2003.12.049

Perepechko II. An Introduction to Polymer Physics. Mir Publisher, Moscow, English edn, 1981.

Lawandy SN, Abdel-Nour KN. Dielectric properties and stress–strain measurements of chloroprene rubber based on different carbon black fillers. J Appl Polym Sci 1984; 31: 841. http://dx.doi.org/10.1002/app.1986.070310308 DOI: https://doi.org/10.1002/app.1986.070310308

Rudko GYu, Kovalchuk AO, Bondarenko VA, Fediv VI, Gule EG. Tunable electrophysical properties of composites nano-CdS/polyvinyl alcohol. Mater Chem Phys 2014; 148: 77-81. DOI: https://doi.org/10.1016/j.matchemphys.2014.07.014

Downloads

Published

2016-04-18

How to Cite

E. Abulyazied, D., A. Mansour, N., M. Mazrouaa, A., & G. Mohamed, M. (2016). Physical Properties of Polyacrylamide/Polyvinylalcohol Silica Nanocomposites. Journal of Research Updates in Polymer Science, 5(1), 10–17. https://doi.org/10.6000/1929-5995.2016.05.01.2

Issue

Section

Articles