Optimizing Activators Regenerated by Electron Transfer for Atom Transfer Radical Polymerization of Methyl Methacrylate Initiated by Ethyl 2-bromopropionate
DOI:
https://doi.org/10.6000/1929-5995.2016.05.04.3Keywords:
Ethyl 2-bromopropionate, ARGET ATRP, MMA, reducing agent.Abstract
In this study, we used ethyl 2-bromopropionate (EBrP) as an initiator of activators regenerated by electron transfer for atom transfer radical polymerization (ARGET ATRP) of methyl methacrylate (MMA). We investigated in detail the effect on polymerization of different kinds of reducing agents and ligands, the amounts of the reducing agent and catalyst, and reaction temperature. We determined the molecular weight and dispersity of the polymers by gel permeation chromatography (GPC). The results reveal glucose to be the best reducing agent for this system. The monomer conversion increased with increases in the reaction temperature and in the feeding amounts of the reducing agent and catalyst. The optimum amount of the reducing agent and minimal amount of catalyst required depend on the particular system. For example, we polymerized MMA with 200 ppm of catalyst and 15-fold of glucose/CuCl2 resulting in a PMMA with high Mn (Mn,GPC = 48 700, Mn,theo = 48 500) and low dispersity (1.27). The first-order kinetics show that the molecular weights increased linearly with the monomer conversion and are consistent with the theoretical values, the chain extension reaction and end group analysis results also demonstrate that the characteristics of polymerization process belong to a typical “living”/controlled radical polymerization. Moreover, 1H-NMR analysis results indicate the stereoregularity of the polymer is given priority over syndiotactic architecture and the effect of the type of ligand on the stereoregularity is very slight.
References
Wang JS, Matyjaszewski K. Controlled/"living" radical polymerization. atom transfer radical polymerization in the presence of transition-metal complexes. J Am Chem Soc 1995; 117: 5615-5614. https://doi.org/10.1021/ja00125a035 DOI: https://doi.org/10.1021/ja00125a035
Wang JS, Matyjaszewski K. Controlled/" living" radical polymerization. Halogen atom transfer radical polymerization promoted by a Cu (I)/Cu (II) redox process. Macromolecules 1995; 28: 7910-7901. https://doi.org/10.1021/ma00127a042 DOI: https://doi.org/10.1021/ma00127a042
Jakubowski W, Matyjaszewski K. Activators Regenerated by Electron Transfer for Atom‐Transfer Radical Polymerization of (Meth) acrylates and Related Block Copolymers. Angew Chem 2006; 118: 4598-4594. https://doi.org/10.1002/ange.200600272 DOI: https://doi.org/10.1002/ange.200600272
Min K, Gao H, Matyjaszewski K. Use of ascorbic acid as reducing agent for synthesis of well-defined polymers by ARGET ATRP. Macromolecules 2007; 40: 1791-1789. https://doi.org/10.1021/ma0702041 DOI: https://doi.org/10.1021/ma0702041
Mendonca PV, Averick SE, Konkolewicz D, Serra AC, Popov AV, Guliashvili T, Matyjaszewski K, Coelho JFJ. Straightforward ARGET ATRP for the Synthesis of Primary Amine Polymethacrylate with Improved Chain-End Functionality under Mild Reaction Conditions. Macromolecules 2014; 47: 4621-4615. https://doi.org/10.1021/ma501007j DOI: https://doi.org/10.1021/ma501007j
Pan JL, Li Z, Zhang LF, Cheng ZP, Zhu XLZ. Iron-mediated AGET ATRP of Styrene and Methyl Methacrylate Using Ascorbic Acid Sodium Salt as Reducing Agent. Chin J Polym Sci 2014; 32: 1018-1010. https://doi.org/10.1007/s10118-014-1481-2 DOI: https://doi.org/10.1007/s10118-014-1481-2
Jakubowski W, Min K, Matyjaszewski K. Activators Regenerated by Electron Transfer for Atom Transfer Radical Polymerization of Styrene. Macromolecules 2006; 39: 45-39. https://doi.org/10.1021/ma0522716 DOI: https://doi.org/10.1021/ma0522716
Siegwart DJ, Leiendecker M, Langer R, Anderson DG. Automated ARGET ATRP Accelerates Catalyst Optimization for the Synthesis of Thiol-Functionalized Polymers. Macromolecules 2012; 45: 1261-1254. https://doi.org/10.1021/ma3000219 DOI: https://doi.org/10.1021/ma3000219
Liu LC, Wang GX, Lu M, Wu H. Activators regenerated by electron transfer in ATRP of methyl methacrylate with alcohol as reducing agent in the presence of a base. Iranian Polymer Journal 2013; 22: 896-891. https://doi.org/10.1007/s13726-013-0188-5 DOI: https://doi.org/10.1007/s13726-013-0188-5
Bai LJ, Wang WX, Wang MH, Sun JM, Chen H. Triphenylphosphine as Reducing Agent for Copper(II)-catalyzed AGET ATRP. Chin J Polym Sci 2015; 33: 1270-1260. https://doi.org/10.1007/s10118-015-1676-1 DOI: https://doi.org/10.1007/s10118-015-1676-1
Gnanou Y, Hizal G. Effect of phenol and derivatives on atom transfer radical polymerization in the presence of air. J Polym Sci, Part A: Polym Chem 2004; 42: 359-351. https://doi.org/10.1002/pola.11003 DOI: https://doi.org/10.1002/pola.11003
Dag A, Mert H, Dervaux B, Prez FED, Tunca U, Hizal G. Fructose as a reducing agent for in situ generation of Cu(I) species via an electron-transfer reaction in copper-catalyzed living/controlled radical polymerization of styrene. Designed Monomers & Polymers 2007; 10: 438-425. DOI: https://doi.org/10.1163/156855507781833594
Cao L, Kruk M. Grafting of polymer brushes from nanopore surface via atom transfer radical polymerization with activators regenerated by electron transfer. Polym Chem 2010; 1: 101-97. https://doi.org/10.1039/B9PY00282K DOI: https://doi.org/10.1039/B9PY00282K
Forbes DC, Creixell M, Frizzell H, Peppas NA. Polycationic nanoparticles synthesized using ARGET ATRP for drug delivery. Eur J Pharm Biopharm 2013; 84: 478-472. https://doi.org/10.1016/j.ejpb.2013.01.007 DOI: https://doi.org/10.1016/j.ejpb.2013.01.007
Khezri K, Roghani-Mamaqani H. Effect of MCM-41 nanoparticles on ARGET ATRP of styrene: Investigating thermal properties[J]. J Compos Mater 2015; 49: 1535-1525. https://doi.org/10.1177/0021998314535961 DOI: https://doi.org/10.1177/0021998314535961
Cheesman BT, Willott JD, Webber GB, Edmondson S, Wanless EJ. Ph-responsive brush-modified silica hybrids synthesized by surface-initiated ARGET ATRP. ACS Macro Lett 2012; 1: 1165-1161. https://doi.org/10.1021/mz3003566 DOI: https://doi.org/10.1021/mz3003566
Paniagua SA, Kim Y, Henry K, Kumar R, Perry JW, Marder SR. Surface-initiated polymerization from barium titanate nanoparticles for hybrid dielectric capacitors. ACS Appl Mater Interfaces 2014; 6: 3482-3477. https://doi.org/10.1021/am4056276 DOI: https://doi.org/10.1021/am4056276
Li J, Chen H, Mu G, Sun J, Sun Y, Wang C, Ren Q, Ji J. Synthesis of amphiphilic block copolymers via ARGET ATRP using an inexpensive ligand of PMDETA. React Funct Polym 2013; 73: 1522-1517. https://doi.org/10.1016/j.reactfunctpolym.2013.07.012 DOI: https://doi.org/10.1016/j.reactfunctpolym.2013.07.012
Altintas O, Krolla-Sidenstein P, Gliemann H, Barner-Kowollik C. Single-chain folding of diblock copolymers driven by orthogonal h-donor and acceptor units. Macromolecules 2014; 47: 5888-5877. https://doi.org/10.1021/ma501186k DOI: https://doi.org/10.1021/ma501186k
Krol P, Chmielarz P. Synthesis of PMMA-b-PU-b-PMMA tri-block copolymers through ARGET ATRP in the presence of air. Express Polym Lett 2013; 7: 260-249. https://doi.org/10.3144/expresspolymlett.2013.23 DOI: https://doi.org/10.3144/expresspolymlett.2013.23
Jiang F, Zhang Y, Wang Z, Fang H, Ding Y, Xu H, Wang Z. Synthesis and characterization of nanostructured copolymer-grafted multiwalled carbon nanotube composite thermoplastic elastomers toward unique morphology and strongly enhanced mechanical properties. Ind Eng Chem Res 2014; 53: 20167-20154. https://doi.org/10.1021/ie504005f DOI: https://doi.org/10.1021/ie504005f
Krol P, Chmielarz P. Synthesis of poly(urethane-methacrylate) copolymers using tetraphenylethane-urethane macroinitiator by ARGET ATRP controlled polymerization method. Polimery 2014; 59: 292-279. https://doi.org/10.14314/polimery.2014.279 DOI: https://doi.org/10.14314/polimery.2014.279
Palaskar DV, Sane PS, Wadgaonkar PP. A new ATRP initiator for synthesis of cyclic carbonate-terminated poly(methyl methacrylate). React Funct Polym 70: 931-937. https://doi.org/10.1016/j.reactfunctpolym.2010.08.005 DOI: https://doi.org/10.1016/j.reactfunctpolym.2010.08.005
Nicola R, Kwak Y, Matyjaszewski K. A green route towell-defined high-molecular-weight (co)polymers using ARGET ATRP with alkyl pseudohalides and copper catalysis. Angew Chem 2010; 122: 554-551. DOI: https://doi.org/10.1002/ange.200905340
Tsarevsky NV. Catalytic activity and performance of copper-based complexes mediating atom transfer radical polymerization. Isr J Chem 2012; 52: 287-2767. https://doi.org/10.1002/ijch.201100158 DOI: https://doi.org/10.1002/ijch.201100158
Chen H, Wang C, Liu D, Wang M, Ji C. ARGET ATRP of Acrylonitrile with Ionic Liquid as Reaction Medium and FeBr3/Isophthalic Acid as Catalyst System. J Appl Polym Sci 2011; 122: 3302-3298. https://doi.org/10.1002/app.34399 DOI: https://doi.org/10.1002/app.34399
Wang G, Lu M. ARGET ATRP of copolymerization of styrene and acrylonitrile with environmentally friendly catalyst and ligand. E-Polymers 2012; 12: 636-629. https://doi.org/10.1515/epoly.2012.12.1.629 DOI: https://doi.org/10.1515/epoly.2012.12.1.629
Payne KA, D'Hooge DR, van Steenberge PHM, Reyniers MF, Cunningham MF, Hutchinson RA, Marin GB. ARGET ATRP of Butyl Methacrylate: Utilizing Kinetic Modeling To Understand Experimental Trends. Macromolecules 2013; 46: 3840-3828. https://doi.org/10.1021/ma400388t DOI: https://doi.org/10.1021/ma400388t
Kwak Y, Matyjaszewski K. ARGET ATRP of methyl methacrylate in the presence of nitrogen-based ligands as reducing agents. Polym Int 2009; 58: 247-242. https://doi.org/10.1002/pi.2530 DOI: https://doi.org/10.1002/pi.2530
Simakova A, Averick SE, Konkolewicz D, Matyjaszewski K. Aqueous ARGET ATRP. Macromolecules 2012; 45: 6379-6371. https://doi.org/10.1021/ma301303b DOI: https://doi.org/10.1021/ma301303b
Tang W, Matyjaszewski K. Effects of Initiator Structure on Activation Rate Constants in ATRP. Macromolecules 2007; 40: 1863-1858. https://doi.org/10.1021/ma062897b DOI: https://doi.org/10.1021/ma062897b
Wang XS, Luo N, Ying SK. Controlled/living polymerization of MMA promoted by heterogeneous initiation system (Epn-X–Cux–Bpy). J Polym Sci, Part A: Polym Chem 1999; 37: 1263-1255. https://doi.org/10.1002/(SICI)1099-0518(19990501)37:9<1255::AID-POLA5>3.0.CO;2-O DOI: https://doi.org/10.1002/(SICI)1099-0518(19990501)37:9<1255::AID-POLA5>3.0.CO;2-O
Li Y, Lu G. ARGET ATRP of methyl methacrylate with 2-(8-heptadecenyl)-4,5-dihydro-1H-imidazole-1-ethylamine (OLC) as both ligand and reducing agent in the presence of air. Colloid Polym Sci 2010; 288: 1500-1495. https://doi.org/10.1007/s00396-010-2285-8 DOI: https://doi.org/10.1007/s00396-010-2285-8
Matyjaszewski K. Atom transfer radical polymerization (ATRP): current status and future perspectives. Macromolecules 2012; 45: 4039-4015. https://doi.org/10.1021/ma3001719 DOI: https://doi.org/10.1021/ma3001719
Sawamoto M, Kamigaito M. Living radical polymerization based on transition metal complexes. Trends Polym Sci 1996; 4: 377-371.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 Journal of Research Updates in Polymer Science
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Policy for Journals/Articles with Open Access
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are permitted and encouraged to post links to their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work
Policy for Journals / Manuscript with Paid Access
Authors who publish with this journal agree to the following terms:
- Publisher retain copyright .
- Authors are permitted and encouraged to post links to their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work .