Morphological, Thermal and Electrical Properties of (PEO/PVP)/ Au Nanocomposite Before and After Gamma-Irradiation

Authors

  • E.M. Abdelrazek Physics Department, Faculty of Science, Taibah University, Al-Ula, Saudi Arabia
  • A.M. Abdelghany Spectroscopy Department, Physics Division, National Research Center, Cairo, 12311, Egypt
  • S.I. Badr Physics Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
  • M.A. Morsi Engineering Basic Science Department, Faculty of Engineering, Egyptian Russian University, Cairo, 11829, Egypt

DOI:

https://doi.org/10.6000/1929-5995.2017.06.02.3

Keywords:

Gamma-irradiation, Au NPs, SEM, DSC, electrical resistivity

Abstract

Gold nanoparticles (Au NPs) have been successfully biosynthesized by Chenopodium murale (C. murale) leaf extract. Au NPs were incorporated within polyethylene oxide (PEO)/polyvinyl pyrrolidone (PVP) polymer blend by casting method. Scanning electron microscope (SEM), Differential scanning calorimetry (DSC), and DC electrical resistivity were used to investigate the morphological, thermal, and electrical properties of blend/Au nanocomposite before and after gamma-irradiation at different doses (1, 2, 3, 4 and 5 MR).SEM micrographs confirmed the dispersion of Au NPs within the polymeric matrix due to effect of irradiation process. DSC analysis showed that the thermal stability for irradiated samples was improved as compared with pure blend and its nanocomposite. DC measurements revealed nonlinear behavior for electrical resistivity versus temperature. The electrical resistivity values for blend/Au nanocopmosite and its high irradiated samples were less compared to pure blend.

References

Abdelrazek EM, Elashmawi IS, El-Khodary A, Yassin A. Structural, optical, thermal and electrical studies on PVA/PVP blends filled with lithium bromide. Curr Appl Phys 2010; 10: 607-13.

http://dx.doi.org/10.1016/j.cap.2009.08.005 DOI: https://doi.org/10.1016/j.cap.2009.08.005

Abdelrazek EM, Elashmawi IS, Labeeb S. Chitosan filler effects on the experimental characterization, spectroscopic investigation and thermal studies of PVA/PVP blend films. Physica B 2010; 405: 2021-27.

http://dx.doi.org/10.1016/j.physb.2010.01.095 DOI: https://doi.org/10.1016/j.physb.2010.01.095

Kumar KK, Ravi M, Pavani Y, Bhavani S, Sharma AK, Narasimha Rao VVR. Investigations on the effect of complexation of NaF salt with polymer blend (PEO/PVP) electrolytes on ionic conductivity and optical energy band gaps. Physica B 2011; 406: 1706-12.

http://dx.doi.org/10.1016/j.physb.2011.02.010 DOI: https://doi.org/10.1016/j.physb.2011.02.010

Kumar KK, Ravi M, Pavani Y, Bhavani S, Sharma AK, Narasimha Rao VVR. Electrical conduction mechanism in NaCl complexed PEO/PVP polymer blend electrolytes. J Non-Cryst Solids 2012; 358: 3205-11.

http://dx.doi.org/10.1016/j.jnoncrysol.2012.08.022 DOI: https://doi.org/10.1016/j.jnoncrysol.2012.08.022

Abdelghany AM, Morsi MA, Abdelrazek A, Ahmed MT. Role of Silica Nanoparticles on Structural, Optical and Morphological Properties of Poly(Vinyl Chloride-co-Vinyl Acetate-co-2- Hydroxypropyl Acrylate) Copolymer. Silicon 2016; 1-6.

http://dx.doi.org/10.1007/s12633-016-9483-z DOI: https://doi.org/10.1007/s12633-016-9483-z

Fateixa S, Daniel-da-Silva AL, Jordão N, Barros-Timmons A, Trindade T. Effect of colloidal silver and gold nanoparticles on the thermal behavior of poly (t-butyl acrylate) composites. Colloids Surf A 2013; 436: 231-36.

http://dx.doi.org/10.1016/j.colsurfa.2013.06.009 DOI: https://doi.org/10.1016/j.colsurfa.2013.06.009

Carotenuto G, Nicolais L. Synthesis and characterization of gold-based nanoscopic additives for polymers. Compos Part B Eng 2004; 35: 385-91.

http://dx.doi.org/10.1016/j.compositesb.2004.02.005 DOI: https://doi.org/10.1016/j.compositesb.2004.02.005

Abdel-Aziz MS, Hezma A. Spectroscopic and antibacterial evaluation of nano-hydroxapatite polyvinyl alcohol biocomposite doped with microbial-synthesized nanogold for biomedical applications. Polym-Plast Technol 2013; 52: 1503-9.

http://dx.doi.org/10.1080/03602559.2013.820754 DOI: https://doi.org/10.1080/03602559.2013.820754

Adhyapak PV, Singh N, Vijayan A, Aiyer RC, KhannaP. Single mode waveguide properties of m-NA doped Au/PVA nano-composites: Synthesis, characterization and studies. Mater Lett 2007; 61: 3456-61.

http://dx.doi.org/10.1016/j.matlet.2006.11.078 DOI: https://doi.org/10.1016/j.matlet.2006.11.078

Chang C-C, Chen P-H, Chang C-M. Preparation and charac-terization of acrylic polymer–nanogold nanocomposites from 3-mercaptopropyltrimethoxysilane encapsulated gold nanoparticles. JSol-Gel Sci Technol 2008; 47: 268-73.

http://dx.doi.org/10.1007/s10971-008-1774-4 DOI: https://doi.org/10.1007/s10971-008-1774-4

Luo J, Chu W, Sall S, Petit C. Facile synthesis of monodispersed Au nanoparticles-coated on Stöber silica. Colloids Surfac A 2013; 425: 83-91.

http://dx.doi.org/10.1016/j.colsurfa.2013.02.056 DOI: https://doi.org/10.1016/j.colsurfa.2013.02.056

Cano M, Villuendas P, Benito AM, Urriolabeitia EP, Maser WK. Carbon nanotube-supported gold nanoparticles as efficient catalyst for the selective hydrogenation of nitroaromatic derivatives to anilines. Mater Today Commun 2015; 3: 104-13.

http://dx.doi.org/10.1016/j.mtcomm.2015.02.002 DOI: https://doi.org/10.1016/j.mtcomm.2015.02.002

Hsu S-H, Chou C-W, Tseng S-M. Enhanced thermal and mechanical properties in polyurethane/Au nanocomposites. Macromol Mater Eng 2004; 289: 1096-101.

http://dx.doi.org/10.1002/mame.200400171 DOI: https://doi.org/10.1002/mame.200400171

Vodnik VV, Abazović ND, Stojanović Z, Marinović-Cincović M, Mitrić M, Čomor MI. Optical, structural and thermal characterization of gold nanoparticles–poly (vinylalcohol) composite films. J Compos Mater 2012; 46: 987995.

http://dx.doi.org/10.1177/0021998311413624 DOI: https://doi.org/10.1177/0021998311413624

Abdelrazek EM, El Damrawi G, Elashmawi IS, El-Shahawy A. The influence of γ-irradiation on some physical properties of chlorophyll/PMMA films. Appl Surf Sci 2010; 256: 2711-18.

http://dx.doi.org/10.1016/j.apsusc.2009.11.015 DOI: https://doi.org/10.1016/j.apsusc.2009.11.015

Eisa WH, Abdel-Moneam YK, Shaaban Y, Abdel-Fattah AA, Zeid AMA. Gamma-irradiation assisted seeded growth of Ag nanoparticles within PVA matrix. Mater Chem Phys 2011; 128: 109-13.

http://dx.doi.org/10.1016/j.matchemphys.2011.02.076 DOI: https://doi.org/10.1016/j.matchemphys.2011.02.076

Abdelghany AM, Abdelrazek EM, Badr SI, Morsi MA. Effect of gamma-irradiation on (PEO/PVP)/Au nanocomposite: Materials for electrochemical and optical applications. Mater Des 2016; 97: 532-43.

http://dx.doi.org/10.1016/j.matdes.2016.02.082 DOI: https://doi.org/10.1016/j.matdes.2016.02.082

Abdelghany AM, Abdelrazek EM, Badr SI, Abdel-Aziz MS, Morsi MA. Effect of Gamma-irradiation on biosynthesized gold nanoparticles using Chenopodium murale leaf extract. J Saudi Chem Soc 2015.

http://dx.doi.org/10.1016/j.jscs.2015.10.002 DOI: https://doi.org/10.1016/j.jscs.2015.10.002

Kulasekarapandian K, Jayanthi S, Muthukumari A, Arulsankar A, Sundaresan B. Preparation and characterization of PVC–PEO based polymer blend electrolytes complexed with Lithium perchlorate. Int J Eng Res Dev 2013; 5: 30-39.

Saroj AL, Singh RK, Chandra S. Thermal, vibrational, and dielectric studies on PVP/LiBF4+ ionic liquid [EMIM][BF4]-based polymer electrolyte films. J Phys Chem Solids 2014; 75: 849-57.

http://dx.doi.org/10.1016/j.jpcs.2014.02.005 DOI: https://doi.org/10.1016/j.jpcs.2014.02.005

Baykal A, Bıtrak N, Ünal B, Kavas H, Durmus Z, Özden Ş, et al. Polyol synthesis of (polyvinylpyrrolidone) PVP–Mn3O4 nanocomposite. J Alloys Compds 2010; 502: 199-205.

http://dx.doi.org/10.1016/j.jallcom.2010.04.143 DOI: https://doi.org/10.1016/j.jallcom.2010.04.143

Sivaiah K, Kumar KN, Naresh V, Buddhudu S. Structural and optical properties of Li+: PVP & Ag+: PVP polymer films. Mater Sci Appl 2011; 2: 1688-96.

http://dx.doi.org/10.4236/msa.2011.211225 DOI: https://doi.org/10.4236/msa.2011.211225

Liu Y, Lee JY, Hong L. Morphology, crystallinity, and electrochemical properties of in situ formed poly (ethylene oxide)/TiO2 nanocomposite polymer electrolytes. J Appl Polym Sci 2003; 89: 2815-22. DOI: https://doi.org/10.1002/app.12487

Lee J, Bhattacharyya D, Easteal AJ, Metson JB. Properties of nano-ZnO/poly (vinyl alcohol)/poly (ethylene oxide) composite thin films. Curr Appl Phys 2008; 8: 42-47.

http://dx.doi.org/10.1016/j.cap.2007.04.010 DOI: https://doi.org/10.1016/j.cap.2007.04.010

Johan MR, Shy OH, Ibrahim S, Yassin SMM, Hui TY. Effects of Al2O3 nanofiller and EC plasticizer on the ionic conductivity enhancement of solid PEO–LiCF3SO3 solid polymer electrolyte. Solid State Ion 2011; 196: 41-47.

http://dx.doi.org/10.1016/j.ssi.2011.06.001 DOI: https://doi.org/10.1016/j.ssi.2011.06.001

Karmakar A, Ghosh A. Poly ethylene oxide (PEO)–LiI polymer electrolytes embedded with CdO nanoparticles. J Nanopart Res 2011; 13: 2989-96.

http://dx.doi.org/10.1007/s11051-010-0194-x DOI: https://doi.org/10.1007/s11051-010-0194-x

Kumar KK, Ravi M, Pavani Y, Bhavani S, Sharma AK, Narasimha Rao VVR. Investigations on PEO/PVP/NaBr complexed polymer blend electrolytes for electrochemical cell applications. J Membr Sci 2014; 454: 200-11.

http://dx.doi.org/10.1016/j.memsci.2013.12.022 DOI: https://doi.org/10.1016/j.memsci.2013.12.022

Money BK, Swenson J. Dynamics of poly (ethylene oxide) around its melting temperature. Macromolecules 2013; 46: 6949-54.

http://dx.doi.org/10.1021/ma4003598 DOI: https://doi.org/10.1021/ma4003598

Przyłuski J, Such K, Wyciślik H, Wieczorek W, Floriańczyk Z. PEO-based polymer blends as materials for solid electrolytes. Synth Met 1990; 35: 241-47.

http://dx.doi.org/10.1016/0379-6779(90)90048-P DOI: https://doi.org/10.1016/0379-6779(90)90048-P

Peng Z, Kong LX. A thermal degradation mechanism of polyvinyl alcohol/silica nanocomposites. Polym Degrad Stab 2007; 92: 1061-71.

http://dx.doi.org/10.1016/j.polymdegradstab.2007.02.012 DOI: https://doi.org/10.1016/j.polymdegradstab.2007.02.012

Mansour SA. Study of thermal stabilization for polystyrene/carbon nanocomposites via TG/DSC techniques. J Therm Anal Calorim 2013; 112: 579-83.

http://dx.doi.org/10.1007/s10973-012-2595-9 DOI: https://doi.org/10.1007/s10973-012-2595-9

Rahaman M, Chaki TK, Khastgir D. Control of the temperature coefficient of the DC resistivity in polymer-based composites. J Mater Sci 2013; 48: 7466-75.

http://dx.doi.org/10.1007/s10853-013-7561-9 DOI: https://doi.org/10.1007/s10853-013-7561-9

Zhang C, Ma C-A, Wang P, Sumita M. Temperature dependence of electrical resistivity for carbon black filled ultra-high molecular weight polyethylene composites prepared by hot compaction. Carbon 2005; 43: 2544-53.

http://dx.doi.org/10.1016/j.carbon.2005.05.006 DOI: https://doi.org/10.1016/j.carbon.2005.05.006

Yoon K-B, Lee GH, Choi WY, Lee D-H. Electrical properties of non-crosslinked polyethylene/syndiotactic polystyrene composites filled with carbon black. Polym J 2007; 39: 1143-49.

http://dx.doi.org/10.1295/polymj.PJ2007046 DOI: https://doi.org/10.1295/polymj.PJ2007046

Bhargav PB, Sarada BA, Sharma AK, Narasimha Rao VVR. Electrical conduction and dielectric relaxation phenomena of PVA based polymer electrolyte films. J Macromol Sci Part A: Pure Appl Chem 2009; 47: 131-37.

http://dx.doi.org/10.1080/10601320903458564 DOI: https://doi.org/10.1080/10601320903458564

Downloads

Published

2017-06-19

How to Cite

Abdelrazek, E., Abdelghany, A., Badr, S., & Morsi, M. (2017). Morphological, Thermal and Electrical Properties of (PEO/PVP)/ Au Nanocomposite Before and After Gamma-Irradiation. Journal of Research Updates in Polymer Science, 6(2), 45–54. https://doi.org/10.6000/1929-5995.2017.06.02.3

Issue

Section

Articles