Anisotropy Enhanced Phase Separation in Polymer Dispersed Liquid Crystals

Authors

  • Farida Benmouna Faculty of Sciences, University of Tlemcen, BP 119, 13000, Algeria
  • Mustapha Benmouna Faculty of Sciences, University of Tlemcen, BP 119, 13000, Algeria

DOI:

https://doi.org/10.6000/1929-5995.2017.06.02.4

Keywords:

PDLCs, anisotropy, nematic, phase separation, swelling, kinetics, PIPS

Abstract

Phase separated blends of polymers and low molecular weight liquid crystals, commonly known as polymer dispersed liquid crystals in short PDLCs, are investigated. These materials offer a realm of applications in modern technologies, including sensors, commutable windows, display devices and telecommunication systems. A particular attention is given to the effects of anisotropy of the liquid crystal on the phase behavior under equilibrium and non equilibrium conditions. The theoretical formalism used is based on the lattice model of isotropic mixing, combined with standards theories of nematic and smectic-A orders. Considering the equilibrium phase behavior, we find that the nematic order enhances the polymer / solvent phase separation, and that the osmotic pressure shows substantial changes for relatively small polymer volume fractions. We find that the anisotropy enhanced phase separation is more pronounced for a smectic-A liquid crystal, and the miscibility gap is widened. The kinetics of swelling by nematic LCs is examined using a linear solvent diffusion process, with a rate of swelling directly related to the derivative of the osmotic pressure. An abrupt swelling / de-swelling transition is found, due to overwhelming effects of the anisotropic interaction beyond the threshold LC concentration. Anisotropy enhanced phase separation is also investigated in the method of synthesis based on the polymerization induced phase separation mechanism. We find that the kinetics of separation during early stages of polymerization is faster, due to the anisotropic interaction of the low molecular weight solvent. The kinetics speed up is favored by the long range viscous flow effects due to hydrodynamic interactions. A limited selection of experimental data in the literature is chosen to validate some theoretical predictions obtained from the present formalisms.

References

Singh S, Srivastava JK, Singh, RK. Polymer Dispersed Liquid Crystals. In: Liquid crystalline polymers Springer International Publishing 2016; p. 195-250. https://doi.org/10.1007/978-3-319-22894-5_7 DOI: https://doi.org/10.1007/978-3-319-22894-5_7

Yang DK, Wu ST. Liquid crystal materials. In: Fundamentals of liquid crystal devices. John Wiley and Sons, Ltd.: Chichester: UK: 2006: p. 191-212. https://doi.org/10.1002/0470032030.ch6 DOI: https://doi.org/10.1002/0470032030.ch6

Kim Y, Kim K, Kim KB, Park, JY, Lee N, Seo Y. Flexible polymer dispersed liquid crystal film with graphene transparent electrodes. Curr Appl Phys 2016; 16: 409-414. https://doi.org/10.1016/j.cap.2016.01.003 DOI: https://doi.org/10.1016/j.cap.2016.01.003

Liu J, Liu X, Zhen Z. Effects of chiral additives on the electro-optical properties of polymer dispersed liquid crystal. Mater Lett 2016; 163: 142-145. https://doi.org/10.1016/j.matlet.2015.10.060 DOI: https://doi.org/10.1016/j.matlet.2015.10.060

Kim M, Park, KJ, Seok S, Ok JM, Jung HT, Choe J, Kim DH. Fabrication of microcapsules for dye-doped polymer-dispersed liquid crystal-based smart windows. Appl Mater Interfaces 2015; 7: 17904-17909. https://doi.org/10.1021/acsami.5b04496 DOI: https://doi.org/10.1021/acsami.5b04496

Torres JC, Vergaz R, Barrios D, Sánchez-Pena JM, Viñuales A, Grande HJ, Cabañero G. Frequency and temperature dependence of fabrication parameters in polymer dispersed liquid crystal devices. Materials 2014; 7: 3512-3521. https://doi.org/10.3390/ma7053512 DOI: https://doi.org/10.3390/ma7053512

Srivastava JK, Singh RK, Dhar R, Singh S. Thermal and morphological studies of liquid crystalline materials dispersed in a polymer matrix. Liq Cryst 2011; 38: 849-859. https://doi.org/10.1080/02678292.2011.583995 DOI: https://doi.org/10.1080/02678292.2011.583995

Perju E, Paslaru E, Marin L. Polymer-dispersed liquid crystal composites for bio-applications: thermotropic, surface and optical properties. Liq Cryst 2015; 42: 370-382. https://doi.org/10.1080/02678292.2014.992055 DOI: https://doi.org/10.1080/02678292.2014.992055

Kumar P, Sharma V, Jaggi C, Raina KK. Dye-dependent studies on droplet pattern and electro-optic behaviour of polymer dispersed liquid crystal. Liq Cryst 2016; 1-11. https://doi.org/10.1080/02678292.2016.1247476 DOI: https://doi.org/10.1080/02678292.2016.1240834

Kawata Y, Yamamoto T, Kihara H, Yamamura Y, Saito K, Ohno K. Three gel states of colloidal composites consisting of polymer-brush-afforded silica particles and a nematic liquid crystal with distinct viscoelastic and optical properties. ACS Appl Mater Interfaces 2016; 8: 29649-29657. https://doi.org/10.1021/acsami.6b07893 DOI: https://doi.org/10.1021/acsami.6b07893

Kularatne RS, Kim H, Boothby JM, Ware, TH. Liquid crystal elastomer actuators: Synthesis, alignment, and applications. J Macromol Sci B 2017; 55, 395-411. https://doi.org/10.1002/polb.24287 DOI: https://doi.org/10.1002/polb.24287

Kyu T, Chiu HW. Morphology development during polymerization-induced phase separation in a polymer dispersed liquid crystal. Polymer 2001; 42: 9173-9185. https://doi.org/10.1016/S0032-3861(01)00389-5 DOI: https://doi.org/10.1016/S0032-3861(01)00389-5

Benmouna F, Bouabdellah-Dembahri Z, Benmouna M. Polymerization-induced phase separation: phase behavior developments and hydrodynamic interaction. J Macromol Sci B 2013; 52: 998-1008. https://doi.org/10.1080/00222348.2012.748617 DOI: https://doi.org/10.1080/00222348.2012.748617

Deshmukh RR. Electro-optic and Dielectric Responses. In: PDLC composite systems. In: Liquid crystalline polymers. Springer International Publishing 2015; p. 169-195. https://doi.org/10.1007/978-3-319-20270-9_7 DOI: https://doi.org/10.1007/978-3-319-20270-9_7

Wermter H, Finkelmann H. Liquid crystalline elastomers as artificial muscles. e-Polymers 2001; 1: 111-123. https://doi.org/10.1515/epoly.2001.1.1.111 DOI: https://doi.org/10.1515/epoly.2001.1.1.111

Benmouna F, Maschke U, Coqueret X, Benmouna M. Theoretical phase behavior of crosslinked polymers and liquid crystals. Macromol Theory Simul 2001; 10: 63-70. https://doi.org/10.1002/1521-3919(20010101)10:1<63::AID-MATS63>3.0.CO;2-P DOI: https://doi.org/10.1002/1521-3919(20010101)10:1<63::AID-MATS63>3.0.CO;2-P

Benmouna F, Maschke U, Coqueret X, Benmouna M. Miscibility in cross-linked polymer-solvent systems with nematic interactions. Macromolecules 2000; 33: 1054-1062. https://doi.org/10.1021/ma990517z

Benmouna F, Maschke U, Coqueret X, Benmouna M. Equilibrium phase behavior of polymer and liquid crystal blends. Macromol Theory Simul 2000; 9: 215-229. https://doi.org/10.1002/1521-3919(20000601)9:5<215::AID-MATS215>3.0.CO;2-R DOI: https://doi.org/10.1002/1521-3919(20000601)9:5<215::AID-MATS215>3.0.CO;2-R

Benmouna F, Coqueret, X, Maschke U, Benmouna M. Phase behavior of blends of polymers and smectic-A liquid crystals. Macromolecules 1998; 31: 4879-4890. https://doi.org/10.1021/ma9804038 DOI: https://doi.org/10.1021/ma9804038

Benmouna F, Maschke U, Coqueret X, Benmouna M. Effects of nematic coupling on the phase behaviour of nematogen mixtures. Polym Int 2001; 50: 469-474. https://doi.org/10.1002/pi.659 DOI: https://doi.org/10.1002/pi.659

Park S, Kim HK, Hong JW. Investigation of the photopolymerization-induced phase separation process in polymer dispersed liquid crystal. Polym Test 2010; 29: 886-893. https://doi.org/10.1016/j.polymertesting.2010.05.015 DOI: https://doi.org/10.1016/j.polymertesting.2010.05.015

Nwabunma D, Chiu HW, Kyu T. Theoretical investigation on dynamics of photopolymerization-induced phase separation and morphology development in nematic liquid crystal/polymer mixtures. J Chem Phys 2000; 113: 64296436. https://doi.org/10.1063/1.1309537 DOI: https://doi.org/10.1063/1.1309537

Benmouna F, Maschke U, Coqueret X, Benmouna M. Miscibility in cross-linked polymer-solvent systems with nematic interactions. Macromolecules 2000; 33: 1054-1062. https://doi.org/10.1021/ma990517z DOI: https://doi.org/10.1021/ma990517z

Benmouna F, Maschke U, Leclercq L, Ewen B, Coqueret X, Benmouna M. On the miscibility of crosslinked networks and solvents with and without nematic order. Mol Cryst Liq Cryst A 1999; 330: 1709-1717. https://doi.org/10.1080/10587259908025623 DOI: https://doi.org/10.1080/10587259908025623

Bouchaour T, Benmouna F, Leclercq L, Ewen B, Coqueret X, Benmouna M, Maschke U. Phase equilibrium of poly(n-butyl acrylate) and E7. Liq Cryst 2000; 3: 413-420. https://doi.org/10.1080/026782900202877 DOI: https://doi.org/10.1080/026782900202877

Roussel F, Maschke U, Buisine JM, Coqueret X, Benmouna F. Phase properties of hexanedioldiacrylate/E7 blends. Mol Cryst Liq Cryst 2001; 365: 1641-1649. https://doi.org/10.1080/10587250108025347 DOI: https://doi.org/10.1080/10587250108025347

Maschke U, Benmouna F, Roussel F, Daoudi A, Gyselinck F, Buisine JM, Coqueret X, Benmouna, M. Phase diagrams of cured and uncured propoxylated glyceroltriacrylate/5CB mixtures. Macromol Chem Phys 2001; 202: 1100-1104. https://doi.org/10.1002/1521-3935(20010401)202:7<1100::AID-MACP1100>3.0.CO;2-I

Benmouna F, Daoudi, A, Roussel F, Leclercq L, Buisine JM, Coqueret X, Benmouna M, Ewen B, Maschke U. Effect of molecular weight on the phase diagram and thermal properties of poly(styrene)/8CB mixtures. Macromolecules 2000; 33: 960-967. https://doi.org/10.1021/ma991228d DOI: https://doi.org/10.1021/ma991228d

Gogibus N, Maschke U, Benmouna F, Ewen B, Coqueret X, Benmouna M. Phase diagrams of poly(dimethylsiloxane) and 5CB blends. J. Polym. Sci Part B: Polym Phys 2001; 5: 581-588. https://doi.org/10.1002/1099-0488(20010301)39:5<581::AID-POLB1031>3.0.CO;2-Z DOI: https://doi.org/10.1002/1099-0488(20010301)39:5<581::AID-POLB1031>3.0.CO;2-Z

Bouchaour T, Benmouna F, Roussel F, Buisine JM, Coqueret X, Benmouna M, Maschke U. Equilibrium phase diagram of poly(2-phenoxyethylacrylate) and 5CB. Polymer 2001; 4: 1663-1667. https://doi.org/10.1016/S0032-3861(00)00403-1 DOI: https://doi.org/10.1016/S0032-3861(00)00403-1

Benmouna F, Peng B, Gapinski J, Patkowski A, Ruhe J, Johannsmann D. Dynamic light scattering from liquid crystal polymer brushes swollen in a nematic solvent. Liq Cryst 2001; 28: 1353-1360. https://doi.org/10.1080/02678290110061395 DOI: https://doi.org/10.1080/02678290110061395

Benmouna F, Maschke U, Coqueret X, Benmouna M. On the phase equilibria of nematic mixtures. J Polym Sci Part B: Polym Phys 2000; 38: 478-485. https://doi.org/10.1002/(SICI)1099-0488(20000201)38:3<478::AID-POLB13>3.0.CO;2-Q DOI: https://doi.org/10.1002/(SICI)1099-0488(20000201)38:3<478::AID-POLB13>3.0.CO;2-Q

Maschke U, Benmouna F, Roussel F, Daoudi A, Gyselinck F, Buisine JM, Coqueret X, Benmouna M. Phase diagrams of cured and uncured propoxylated glyceroltriacrylate/5CB mixtures. Macromol Chem Phys 2001; 202: 1100-1104. https://doi.org/10.1002/1521-3935(20010401)202:7<1100::AID-MACP1100>3.0.CO;2-I DOI: https://doi.org/10.1002/1521-3935(20010401)202:7<1100::AID-MACP1100>3.0.CO;2-I

Benmouna F, Peng B, Ruhe J, Johannsmann D. Phase diagrams of phenyl benzoate side group liquid crystal polymers and similar low molecular mass liquid crystals. Liq Cryst 1999; 26: 1655-1661. https://doi.org/10.1080/02678292.1999.11509449 DOI: https://doi.org/10.1080/02678292.1999.11509449

Khan M, Park SY. Liquid crystal-based biosensor with backscattering interferometry: A quantitative approach. Biosensors and Bioelectronics 2017; 87: 976-983. https://doi.org/10.1016/j.bios.2016.09.065 DOI: https://doi.org/10.1016/j.bios.2016.09.065

Khosla S, Lal S, Sood N, Bawa SS, Singh N. Liquid crystal elastomers in biological applications: a review. Int J Theor Appl Sci 2011; 3: 67-75.

Downloads

Published

2017-06-16

How to Cite

Benmouna, F., & Benmouna, M. (2017). Anisotropy Enhanced Phase Separation in Polymer Dispersed Liquid Crystals. Journal of Research Updates in Polymer Science, 6(2), 55–67. https://doi.org/10.6000/1929-5995.2017.06.02.4

Issue

Section

Articles