Synthesis by ATRP of Polystyrene-b-Poly(4-vinylpyridine) and Characterization by Inverse Gas Chromatography

Authors

  • Mohammad Rajab Laboratory of Materials, Catalysis, Environment and Analytical Methods (MCEMA), Faculty of Sciences, LEADDER-EDST, Lebanese University, Hadath, Beirut, 12000, Lebanon
  • Tayssir Hamieh Laboratory of Materials, Catalysis, Environment and Analytical Methods (MCEMA), Faculty of Sciences, LEADDER-EDST, Lebanese University, Hadath, Beirut, 12000, Lebanon
  • Aissam Airoudj Institut de Science des Matériaux de Mulhouse (IS2M), CNRS, UPR 9096, 15 Rue Jean Starcky, B.P. 2488 -68057, Mulhouse Cedex
  • Karine Mougin Institut de Science des Matériaux de Mulhouse (IS2M), CNRS, UPR 9096, 15 Rue Jean Starcky, B.P. 2488 -68057, Mulhouse Cedex
  • Kamal Hariri Laboratory of Materials, Catalysis, Environment and Analytical Methods (MCEMA), Faculty of Sciences, LEADDER-EDST, Lebanese University, Hadath, Beirut, 12000, Lebanon
  • Wassim Rammal Laboratory of Materials, Catalysis, Environment and Analytical Methods (MCEMA), Faculty of Sciences, LEADDER-EDST, Lebanese University, Hadath, Beirut, 12000, Lebanon
  • Houssein Mortada Laboratory of Materials, Catalysis, Environment and Analytical Methods (MCEMA), Faculty of Sciences, LEADDER-EDST, Lebanese University, Hadath, Beirut, 12000, Lebanon
  • Mariam Akil Laboratory of Materials, Catalysis, Environment and Analytical Methods (MCEMA), Faculty of Sciences, LEADDER-EDST, Lebanese University, Hadath, Beirut, 12000, Lebanon
  • Ahmad Kassas Laboratory of Materials, Catalysis, Environment and Analytical Methods (MCEMA), Faculty of Sciences, LEADDER-EDST, Lebanese University, Hadath, Beirut, 12000, Lebanon
  • Joumana Toufaily Laboratory of Materials, Catalysis, Environment and Analytical Methods (MCEMA), Faculty of Sciences, LEADDER-EDST, Lebanese University, Hadath, Beirut, 12000, Lebanon

DOI:

https://doi.org/10.6000/1929-5995.2017.06.03.2

Keywords:

Radical polymerization, Polystyrene-b-Poly(4-vinylpyridine), Inverse Gas Chromatography, Specific interactions, Acid and Base Constants

Abstract

A linear diblock copolymer [Polystyrene-b-Poly(4-vinyl-pyridine)] (PS-b-P4VP) was successfully prepared through Atom Transfer Radical Polymerization (ATRP). This synthesis is performed in two successive steps: using the (1-bromoethyl) benzene as initiatorand and Hexamethyl tris [2(dimethylamino)ethyl] amine as ligands in a protic solvent. The first step of the synthesis allows the realization of block polystyrene having a terminal function; however, Bromine (Br) permits the grafting of the second successive block P4VP. RMN -1H demonstrates that the P4VP block has been grafted onto the PS block. The molecular weight of PS-b-P4VP is determined by size exclusion chromatography, and its thermal stability is examined by TGA. The surface and the thermodynamic properties of this copolymer are studied by inverse gas chromatography (IGC). The new Hamieh Model shows that the synthesized copolymer PS-P4VP has an amphoteric behavior with rather very basic character that is six times stronger than acidic character (in Lewis terms), reflected the presence of acidic and basic groups in the structure of the PS-P4VP copolymer, more particularly the presence of benzenic, methyl and vinylpyridine groups.

References

Hamley IW. The physics of block copolymers. New York: Oxford University Press 1998.

Sunil K, Varshney X, Zhong Y, Eisenberg A. Anionic homopolymerization and block copolymerization of 4-vinylpyridine and its investigation by high-temperature size-exclusion chromatography in N-methyl-2-pyrrolidinone. Macromolecules 1993; 26: 701-4. https://doi.org/10.1021/ma00056a022 DOI: https://doi.org/10.1021/ma00056a022

Gao Z, Eisenberg A. A model of micellization for block copolymers in solutions. Macromolecules 1993; 26: 7353-13. https://doi.org/10.1021/ma00078a035 DOI: https://doi.org/10.1021/ma00078a035

Hong K, Urhig D, Mays JW. Living anionic polymerization Current Opinion in Solid State and Materials Science 1999; 120: 531-4. https://doi.org/10.1016/S1359-0286(00)00011-5 DOI: https://doi.org/10.1016/S1359-0286(00)00011-5

Ebdon JR, Eastmond GC. New methods of polymer synthesis, Chap 2. Blackie Academic and Professional, Glasgow, UK: 1995. https://doi.org/10.1007/978-94-011-0607-8 DOI: https://doi.org/10.1007/978-94-011-0607-8

Faust R, Shaffer TD. Cationic polymerization. Fundamentals and applications. ACS Symp Series 666: 1997. DOI: https://doi.org/10.1021/bk-1997-0665

Kamigaito M, Ando T, Sawamoto M, Metal-catalyzed living radical polymerization. Chemical Reviews 2001; 101: 3689-12. https://doi.org/10.1021/cr9901182 DOI: https://doi.org/10.1021/cr9901182

Matyjaszewsk K, Xia J. Atom transfer radical polymerization. Chemical reviews 2001; 101: 2921-9. https://doi.org/10.1021/cr940534g DOI: https://doi.org/10.1021/cr940534g

Wang JS, Matyjaszewski K. Controlled/" living" radical polymerization. Atom transfer radical polymerization in the presence of transition-metal complexes. Journal of the American Chemical Society 1995; 117: 5614. https://doi.org/10.1021/ja00125a035 DOI: https://doi.org/10.1021/ja00125a035

Kato M, Kamigaito M, Sawamoto M, Higashimura T. Polymerization of methyl methacrylate with the carbon tetrachloride/dichlorotris-(triphenylphosphine) ruthenium (II)/methylaluminum bis (2, 6-di-tert-butylphenoxide) initiating system: possibility of living radical polymerization. Macromolecules 1995; 28: 1721-13. https://doi.org/10.1021/ma00109a056 DOI: https://doi.org/10.1021/ma00109a056

Braunecker WA, Matyjaszewski K. Controlled/living radical polymerization: Features, developments, and perspectives, Progress in Polymer Science 2007; 32: 93-1. https://doi.org/10.1016/j.progpolymsci.2006.11.002 DOI: https://doi.org/10.1016/j.progpolymsci.2006.11.002

Matyjaszewski K, Coca S, Gaynor SG, Wei M. Zerovalent metals in controlled/“living” radical polymerization. Macromolecules 1997; 30: 7348-23. https://doi.org/10.1021/ma971258l DOI: https://doi.org/10.1021/ma971258l

Matyjaszewski K, Patten KTE, Xia J. Controlled/“living” radical polymerization. Kinetics of the homogeneous atom transfer radical polymerization of styrene. Journal of the American Chemical Society 1997; 119: 674-4. https://doi.org/10.1021/ja963361g DOI: https://doi.org/10.1021/ja963361g

Patten TE, Xia J, Abernathy T, Matyjaszewski K. Polymers with very low polydispersities from atom transfer radical polymerization. Science 1996; 272: 5263-866. https://doi.org/10.1126/science.272.5263.866 DOI: https://doi.org/10.1126/science.272.5263.866

Angot S, Murthy KS, Taton D, Gnanou Y, Atom transfer radical polymerization of styrene using a novel octafunctional initiator: synthesis of well-defined polystyrene stars. Macromolecules 1998; 31: 21 7218. DOI: https://doi.org/10.1021/ma980712y

Ueda J, Kamigaito M, Sawamoto M. Calixarene-Core Multifunctional Initiators for the Ruthenium-Mediated Living Radical Polymerization of Methacrylates 1. Macromolecules 1998; 31: 6762-20. https://doi.org/10.1021/ma980608g DOI: https://doi.org/10.1021/ma980608g

Matyjaszewski K, Wei M, Xia J, McDermott NE. Controlled/“Living” Radical Polymerization of Styrene and Methyl Methacrylate Catalyzed by Iron Complexes 1. Macromolecules 1997; 30: 8161-26. https://doi.org/10.1021/ma971010w DOI: https://doi.org/10.1021/ma971010w

Qiu J, Matyjaszewski K. Polymerization of substituted styrenes by atom transfer radical polymerization. Macromolecules 1997; 30: 5643-19. https://doi.org/10.1021/ma9704222

Coca S, Davis K, Miller PJ,bMatyjaszewski K, Polymerization of acrylates by atom transfer radical polymerization. Amer. Chem. Soc. 1997; 38: 689-12. DOI: https://doi.org/10.1002/macp.1997.021981219

Davis KA, Pail HJ, Matyjaszewski K. Kinetic investigation of the atom transfer radical polymerization of methyl acrylate. Macromolecules 1999; 32: 1767-6. https://doi.org/10.1021/ma9815051 DOI: https://doi.org/10.1021/ma9815051

Wang JL, Grimaud T, Matyjaszewski K. Kinetic study of the homogeneous atom transfer radical polymerization of methyl methacrylate. Macromolecules 1997; 30: 6507-21. https://doi.org/10.1021/ma970636j

Haddleton DM, Jasieczek CB, Hannon MJ, Shooter A. Atom transfer radical polymerization of methyl methacrylate initiated by alkyl bromide and 2-pyridinecarbaldehyde imine copper (I) complexes. Macromolecules 1997; 30: 2190-7. https://doi.org/10.1021/ma961074r DOI: https://doi.org/10.1021/ma961074r

Baggiani C, Trotta F, Giraudi G, Moraglio G, Vanni A. Chromatographic characterization of a molecularly imprinted polymer binding theophylline in aqueous buffers. Journal of Chromatography A 1997; 786: 23-1. https://doi.org/10.1016/S0021-9673(97)00537-2 DOI: https://doi.org/10.1016/S0021-9673(97)00537-2

Neagu V, Untea I, Tudorache E, Luca C. Retention of chromate ion by conventional and N-ethylpyridinium strongly basic anion exchange resins. Reactive and Functional Polymers 2003; 57: 119-2. https://doi.org/10.1016/j.reactfunctpolym.2003.08.005 DOI: https://doi.org/10.1016/j.reactfunctpolym.2003.08.005

Malik MA, Mukhtar R, Zaidi SAR, Ahmed S, Awan MA. Ion-exchange properties of 4-vinylpyridine–divinylbenzene-based anion exchangers for ferric chloride complex anions. Reactive and Functional Polymers 2002; 51: 117-2. https://doi.org/10.1016/S1381-5148(02)00036-6 DOI: https://doi.org/10.1016/S1381-5148(02)00036-6

Cha JN, Zhang Y, Wong HSP, Raoux S, Rettner C, Krupp L, Deline V, Biomimetic approaches for fabricating high-density nanopatterned arrays. Chemistry of materials 2007; 19: 839-4. https://doi.org/10.1021/cm062495i DOI: https://doi.org/10.1021/cm062495i

Zhai GQ, Kang ET, Neoh KG. Poly (2-vinylpyridine)-and poly (4-vinylpyridine)-graft-poly (vinylidene fluoride) copolymers and their pH-sensitive microfiltration membranes. Journal of Membrane Science 2003; 217: 243-1. https://doi.org/10.1016/S0376-7388(03)00140-6 DOI: https://doi.org/10.1016/S0376-7388(03)00140-6

Yin M, Davis TP, Heuts JPA, Barner-Kowollik C. Propagation and Termination Rate Coefficients in N‐Vinylcarbazole Free Radical Polymerization Obtained via 440 nm Pulsed Laser and Online 1H NMR Kinetic Experiments, Macromolecular rapid communications 2003; 24: 408-412. https://doi.org/10.1002/marc.200390066 DOI: https://doi.org/10.1002/marc.200390066

Xia JH, Zhang X, Matyjaszewski K. Atom transfer radical polymerization of 4-vinylpyridine. Macromolecules 1999; 32: 3531-10. https://doi.org/10.1021/ma9816968 DOI: https://doi.org/10.1021/ma9816968

Yang M, Harnishb B. A simple method for the attachment of polymer films on solid substrates. Advanced Materials 2003; 15: 244-3. https://doi.org/10.1002/adma.200390057 DOI: https://doi.org/10.1002/adma.200390057

Wang JL, Grimaud T, Matyjaszewski K. Kinetic study of the homogeneous atom transfer radical polymerization of methyl methacrylate. Macromolecules 1997; 30: 6507-21. https://doi.org/10.1021/ma970636j DOI: https://doi.org/10.1021/ma970636j

Huang CF, Kuo SW, Chen JK, Chan FC. Synthesis and characterization of polystyrene-b-poly (4-vinyl pyridine) block copolymers by atom transfer radical polymerization. Journal of Polymer Research 2005; 12: 449-6. https://doi.org/10.1007/s10965-004-5665-2 DOI: https://doi.org/10.1007/s10965-004-5665-2

Zhou S, Xu Y, Fang S, Chen Z. The Synthesis of Polystyrene-B-Poly (4-Vinylpyridine) by Nitroxide-Medium Controllable Free Radical Polymerization. In Advanced Materials Research 2012; 531: 366. https://doi.org/10.4028/www.scientific.net/AMR.531.366 DOI: https://doi.org/10.4028/www.scientific.net/AMR.531.366

Dan M, Huo F, Zhang X, Wang X, Zhang W. Dispersion RAFT polymerization of 4‐vinylpyridine in toluene mediated with the macro‐RAFT agent of polystyrene dithiobenzoate: Effect of the macro‐RAFT agent chain length and growth of the block copolymer nano‐objects. Journal of Polymer Science Part A: Polymer Chemistry 2013; 51: 1573-7. https://doi.org/10.1002/pola.26527 DOI: https://doi.org/10.1002/pola.26527

Schreiber HP, Lloyd DR. Inverse gas chromatography: characterization of polymers and other materials. Washington: American Chemical Society 1989. DOI: https://doi.org/10.1021/bk-1989-0391.ch001

Cline D, Dalby R. Predicting the quality of powders for inhalation from surface energy and area, Pharmaceutical Research 2002; 19: 1274-9. https://doi.org/10.1023/A:1020338405947 DOI: https://doi.org/10.1023/A:1020338405947

Feeley JC, York P, Sumby BS, Dicks H. Determination of surface properties and flow characteristics of salbutamol sulphate, before and after micronisation. International Journal of Pharmaceutics 1998; 172: 89-1. https://doi.org/10.1016/S0378-5173(98)00179-3 DOI: https://doi.org/10.1016/S0378-5173(98)00179-3

York P, Ticehurst MD, Osborn JC, Roberts RJ, Rowe RC, Characterisation of the surface energetics of milled dl-propranolol hydrochloride using inverse gas chromatography and molecular modeling. International journal of pharmaceutics 1995; 174: 179-1. https://doi.org/10.1016/S0378-5173(98)00247-6 DOI: https://doi.org/10.1016/S0378-5173(98)00247-6

Buckton G. Characterisation of small changes in the physical properties of powders of significance for dry powder inhaler formulations. Advanced drug delivery reviews 1997; 26: 17. https://doi.org/10.1016/S0169-409X(97)00507-3 DOI: https://doi.org/10.1016/S0169-409X(97)00507-3

Voelkel A, Strzemiecka B, Adamska K, Milczewska K. Inverse gas chromatography as a source of physiochemical data. Journal of Chromatography A 2009; 1216: 1551-10. https://doi.org/10.1016/j.chroma.2008.10.096 DOI: https://doi.org/10.1016/j.chroma.2008.10.096

Tazaki M, Wada R, Okabe M, Homma T, Inverse gas chromatographic observation of thermodynamic interaction between poly (vinylidene fluoride) and organic solvents. Polymer Bulletin 2000; 44: 93-1. https://doi.org/10.1007/s002890050578 DOI: https://doi.org/10.1007/s002890050578

Surana R, Randall L, Pyne A, Vemuri NM, Suryanarayanan R, Determination of glass transition temperature and in situ study of the plasticizing effect of water by inverse gas chromatography, Pharmaceutical research 2003; 20: 1647-10. https://doi.org/10.1023/A:1026199604374 DOI: https://doi.org/10.1023/A:1026199604374

Baoli S, Qianru Z, Lina J, Yang L, BinL. Journal of Chromatography A 2007; 1149: 2-390. https://doi.org/10.1016/j.chroma.2007.01.120 DOI: https://doi.org/10.1016/j.chroma.2007.03.127

Santos J, Gil H, Portugal A, Guthrie JT. Characterisation of the surface of a cellulosic multi-purpose office paper by inverse gas chromatography. Cellulose 2001; 8: 217-3. https://doi.org/10.1023/A:1013111226169 DOI: https://doi.org/10.1023/A:1013111226169

Tazaki L. A Surface and thermodynamic characterization of conducting polymers by inverse gas chromatography: I. Polyaniline. Journal of Chromatography A 2002; 969: 229-1. https://doi.org/10.1016/S0021-9673(02)00887-7 DOI: https://doi.org/10.1016/S0021-9673(02)00887-7

Wu R, Que D, Al-Saigh ZY. Surface and thermodynamic characterization of conducting polymers by inverse gas chromatography: II. Polyaniline and its blend, Journal of Chromatography A 2007; 1146: 93-1. https://doi.org/10.1016/j.chroma.2007.01.093 DOI: https://doi.org/10.1016/j.chroma.2007.01.093

Boukerma K, Micˇusˇı´k M, Mravcˇa´kova´ M, Omastova´ M, Vaulay MJ, Beaunier P, Chehimi NM. Surfactant-assisted control of the surface energy and interfacial molecular interactions of polypyrrole. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2007; 293: 28-1. https://doi.org/10.1016/j.colsurfa.2006.07.005 DOI: https://doi.org/10.1016/j.colsurfa.2006.07.005

Bailey RA, Persaud KC. Application of inverse gas chromatography to characterisation of a polypyrrole surface. Analytica chimica acta 1998; 363: 147-2. https://doi.org/10.1016/S0003-2670(98)00084-1 DOI: https://doi.org/10.1016/S0003-2670(98)00084-1

Voelkel A, Grzeskowiak T, The use of solubility parameters in characterization of titanate modified silica gel by inverse gas chromatography. Chromatographia 2000; 51: 608. https://doi.org/10.1007/BF02490820 DOI: https://doi.org/10.1007/BF02490820

Newell HE, Buckton G, Butler DA, Thielmann F, Williams DR. The use of inverse phase gas chromatography to measure the surface energy of crystalline, amorphous, and recently milled lactose. Pharmaceutical research 2001; 18: 662. https://doi.org/10.1023/A:1011089511959 DOI: https://doi.org/10.1023/A:1011089511959

Kalantzopoulou FR, Artemiacti T, Bassiotis I, Katsanos NA, Plagianakos V. Time separation of adsorption sites on heterogeneous surfaces by inverse gas chromatography. Chromatographia 2001; 53: 315-5. https://doi.org/10.1007/BF02490431 DOI: https://doi.org/10.1007/BF02490431

Reutenauer S, Thielmann F. The characterisation of cotton fabrics and the interaction with perfume molecules by inverse gas chromatography (IGC). Journal of materials science 2003; 38: 10-2205. https://doi.org/10.1023/A:1023788400431 DOI: https://doi.org/10.1023/A:1023788400431

Cline D, Dalby R. Use of Inverse Gas Chromatography (IGC) to Determine the Surface Energy and Surface Area of Powdered Materials, Pharmaceutical research 2004; 21: 1718-9. https://doi.org/10.1023/B:PHAM.0000041470.92345.e8 DOI: https://doi.org/10.1023/B:PHAM.0000041470.92345.e8

Askın A, Yazıcı DT. Surface Characterization of Sepiolite by Inverse Gas Chromatography. Chromatographia 2005; 61: 625-11. https://doi.org/10.1365/s10337-005-0558-z DOI: https://doi.org/10.1365/s10337-005-0558-z

Sreekanth TVM, Reddy KS. Analysis of solvent–solvent interactions in mixed isosteric solvents by inverse gas chromatography, Chromatographia 2007; 65: 325-5. https://doi.org/10.1365/s10337-006-0149-7 DOI: https://doi.org/10.1365/s10337-006-0149-7

Yang YC, Jeong, SB, Kim BG, Yoon PR. Examination of dispersive properties of alumina treated with silane coupling agents, by using inverse gas chromatography. Powder Technology 2009; 191: 1-117. https://doi.org/10.1016/j.powtec.2008.09.010 DOI: https://doi.org/10.1016/j.powtec.2008.09.010

Yang YC, Yoon PR, Korean J. Examination of the surface properties of kaolinites by inverse gas chromatography: Dispersive properties, Korean Journal of Chemical Engineering 2007; 24: 165-1. https://doi.org/10.1007/s11814-007-5026-z DOI: https://doi.org/10.1007/s11814-007-5026-z

Batko K, Voelkel A. Inverse gas chromatography as a tool for investigation of nanomaterials. Journal of colloid and interface science 2007; 315: 768-2. https://doi.org/10.1016/j.jcis.2007.07.028 DOI: https://doi.org/10.1016/j.jcis.2007.07.028

Ansari DM, Price GJ. Correlation of mechanical properties of clay filled polyamide mouldings with chromatographically measured surface energies. Polymer 2004; 45: 3663-11. https://doi.org/10.1016/j.polymer.2004.03.045 DOI: https://doi.org/10.1016/j.polymer.2004.03.045

Przybyszewska M, Krzywania A, Zaborsk M, Szynkowska MI, Surface properties of zinc oxide nanoparticles studied by inverse gas chromatography. Journal of Chromatography A 2016; 27: 5284. DOI: https://doi.org/10.1016/j.chroma.2009.04.094

Conder JR, Young CL. In: Physical measurements by gas chromatography. New York: Wiley 1979.

James AT, Martin JP, Gas-liquid partition chromatography: the separation and micro-estimation of volatile fatty acids from formic acid to dodecanoic acid. Biochemical Journal 1952; 50: 679-5. https://doi.org/10.1042/bj0500679 DOI: https://doi.org/10.1042/bj0500679

Conder JR, young CL. Physicochemical measurement by gas chromatography. New-York: John Wiley & Sons 1979.

Saint Flour C, Papirer E. Gas solid chromatography. A method of measuring surface freze energy characteristics of short glass fibers. 1 Through adsorption isotherms, Ind. Eng. Prod. Res. Dev 1982; 21: 337. https://doi.org/10.1021/i300006a029 DOI: https://doi.org/10.1021/i300006a029

Saint Flour C, Papirer E. Gas-solid chromatography: Method of measuring surface free energy characteristics of short fibers. 2. Through retention volumes measured near zero surface coverage. Industrial & Engineering Chemistry Product Research and Development 1982; 21: 666-4. https://doi.org/10.1021/i300008a031 DOI: https://doi.org/10.1021/i300008a031

Papirer E, Vidal A, Balard H. Analysis of solid surface modification. In: Lloyd DR, Ward TC, Schreiber HP (eds) Inverse gas chromatography: characterization of polymers and other materials. ACS Symposium Series 391, Washington 1989. https://doi.org/10.1021/bk-1989-0391.ch018 DOI: https://doi.org/10.1021/bk-1989-0391.ch018

Hamieh T, Rageul-Lescouet M, Nardin M, Haidara H, Schultz J. Study of acid-base interactions between some metallic oxides and model organic molecules. Colloids and Surfaces A: Physicochemical and Engineering Aspects 1997; 125: 155-2. https://doi.org/10.1016/S0927-7757(96)03855-1 DOI: https://doi.org/10.1016/S0927-7757(96)03855-1

Hamieh T, Schultz J. Étude par chromatographie gazeuse inverse de l'influence de la température sur l’aire de molécules adsorbées. J Chim Phys 1996; 93: 1232-24. DOI: https://doi.org/10.1051/jcp/1996931292

Hamieh T, Toufaily J, Mouneimné AH. Effect of the tacticity of PMMA adsorbed on Alumina and Silica on the specific entropy change of polymer by Inverse GC. Chromatographia 2011; 73: 99-1. https://doi.org/10.1007/s10337-010-1824-2 DOI: https://doi.org/10.1007/s10337-010-1824-2

Hamieh T, Abdessater S, Toufaily J. Physicochemical Characterization of some solid materials by inverse gas chromatography. Journal de Physique IV 2005; 124: 37. https://doi.org/10.1051/jp4:2005124006 DOI: https://doi.org/10.1051/jp4:2005124006

Hamieh T, Toufaily J, Fadlallah MB. New equations and models to describe the two dimensional properties of solid surfaces. Advanced Powder Technol 2003; 14: 533-5. https://doi.org/10.1163/156855203322448327 DOI: https://doi.org/10.1163/156855203322448327

Hamieh T, Gouider M, Nardin M, Senecot JM, Schultz J, Christou Ph, Henrat P. Etude par chromatographie gazeuse inverse (CGI) des propriétés acido-basiques des matériaux textiles en verre. Journal de Physique IV 2001; 11: 10. https://doi.org/10.1051/jp4:20011006 DOI: https://doi.org/10.1051/jp4:20011006

Hamieh T, Rageul-Lescouet M, Nardin M, Rezzaki M, Schultz J. Etude des interactions spécifiques entre certains oxydes métalliques et des molécules organiques modèles. J. Chim. Phys. 1997; 94: 503-27. DOI: https://doi.org/10.1051/jcp/1997940503

Hamieh T. Interactions solide-fluide. Partie I. Etude des propriétés superficielles de quelques oxydes métalliques. Lebanese Scientific Research Reports 1997; 2: 19-1.

Hamieh T. Surface acid-base properties of carbon fibres. Advanced powder Technol 1997; 8: 4279-4. https://doi.org/10.1016/S0921-8831(08)60601-9 DOI: https://doi.org/10.1016/S0921-8831(08)60601-9

Hamieh T. Etude des propriétés acido-basiques et énergie interfaciale des oxydes et hydroxydes métalliques. Comptes Rendus de l'Académie des Sciences, Série IIb 1997; 325: 353. https://doi.org/10.1016/s1251-8069(97)81154-2 DOI: https://doi.org/10.1016/S1251-8069(97)81154-2

Hamieh T, Schultz J. Nouvelle méthode de calcul des aires des molécules polaires adsorbées sur MgO et ZnO par chromatographie gazeuse inverse. Comptes Rendus de l'Académie des Sciences, Série IIb, 322 1996; 322: 627-8.

Hamieh T, Schultz J. Relations entre les propriétés superficielles de ZnO et MgO leur potentiel zéta en milieux aqueux et organique. Comptes Rendus de l'Académie des Sciences, Série IIb 1996; 322: 691-9.

Hamieh T, Rageul-Lescouet M, Nardin M, Schultz J. Etude des propriétés superficielles de quelques oxydes métalliques par chromatographie gazeuse inverse et par zétamétrie en milieux aqueux et organique. J. Chim. Phys. 1996; 93: 1332-7. DOI: https://doi.org/10.1051/jcp/1996931332

Hamieh T, Nardin M, Rageul-Lescouet M, Schultz J. Estimation of the surface properties of some metal oxide surfaces by inverse gas chromatography and zeta potential measurements. Le Vide: Science, Technique et Application 1995; 227; 192-12.

Hamieh T, Mazan V, Schultz J. Cross-Sectional Areas of Polar Molecules Adsorbed on a Model Solid Surface by Using the Inverse Gas Chromatography. Le Vide, les Couches Minces 1994; 272: 365-12.

Hamieh T. New Model to Characterize Physicochemical Properties of Porous Materials by Inverse Gas Chromatography at Infinite Dilution, 16th International Zeolite Conference: "Engineering of new micro- and meso-structured materials", Sorrento, Naples (Italy), 4th to 9th July, 2010.

Hamieh T, Study of the Specific Entropy of Poly (α-n-alkyl) Methacrylates Adsorbed on Alumina or Silica by Inverse Gas Chromatography (IGC). Soft Materials 2011; 9: 15-1. https://doi.org/10.1080/1539445X.2010.521608 DOI: https://doi.org/10.1080/1539445X.2010.521608

Hamieh T, New Approach for the Determination of Acid Base Properties of Poly(α-n-alkyl) Methacrylates Adsorbed on Silica by Inverse Gas Chromatography (IGC). Chromatographia 2011; 73: 709-7. https://doi.org/10.1007/s10337-011-1925-6 DOI: https://doi.org/10.1007/s10337-011-1925-6

Hamieh T, Determination of the Transition Phenomena of Poly(α-n-alkyl) methacrylates Adsorbed on Silica by Inverse Gas Chromatography (IGC). Journal of Polymer Research 2011; 18: 1159-5. https://doi.org/10.1007/s10965-010-9519-9 DOI: https://doi.org/10.1007/s10965-010-9519-9

Hamieh T, Saiter JM. Study of the transition phenomena of poly (-n-propyl) methacrylates adsorbed on silica by inverse gas chromatography (IGC). Journal de Physique IV 2004; 113: 25. https://doi.org/10.1051/jp4:20040006 DOI: https://doi.org/10.1051/jp4:20040006

Hamieh T, Rezzaki M, Grohens Y, Schultz J. Glass transition of adsorbed stereoregular PMMA by inverse gas chromatography at infinite dilution. J. Chim. Phys.1998; 951: 1964. https://doi.org/10.1051/jcp:1998348 DOI: https://doi.org/10.1051/jcp:1998348

Hamieh T, Toufaily J, Fadlallah MB, Study of superficial properties of some polymers and oxides. Advanced Powder Technol 2003; 14: 547-5. https://doi.org/10.1163/156855203322448336 DOI: https://doi.org/10.1163/156855203322448336

Hamieh T, Schultz J. New approach to characterise physicochemical properties of solid substrates by inverse gas chromatography at infinite dilution. I. Some new methods to determine the surface areas of some molecules adsorbed on solid surfaces, Journal of Chromatography A 2002; 969: 17-1. https://doi.org/10.1016/S0021-9673(02)00368-0 DOI: https://doi.org/10.1016/S0021-9673(02)00368-0

Hamieh T, Schultz J. New approach to characterise physicochemical properties of solid substrates by inverse gas chromatography at infinite dilution. II. Study of the transition temperatures of poly(methyl methacrylate) at various tacticities and of poly(methyl methacrylate) adsorbed on alumina and silica. Journal of Chromatography A 2002; 969: 27. https://doi.org/10.1016/S0021-9673(02)00358-8 DOI: https://doi.org/10.1016/S0021-9673(02)00358-8

Hamieh T, Fadlallah MB, Schultz J. New approach to characterise physicochemical properties of solid substrates by inverse gas chromatography at infinite dilution. III. Determination of the acid-base properties of some solid substrates (polymers, oxides and carbon fibres): a new model. Journal of Chromatography A 2002; 37-1. https://doi.org/10.1016/S0021-9673(02)00369-2 DOI: https://doi.org/10.1016/S0021-9673(02)00369-2

Hamieh T, Rezzaki M, Schultz J. Study of the second order transitions and acid-base properties of polymers adsorbed on oxides, by using inverse gas chromatography at infinite dilution, I Theory and Methods, J. Colloid and Interface Science 2001; 233: 339-2. https://doi.org/10.1006/jcis.2000.7267 DOI: https://doi.org/10.1006/jcis.2000.7267

Hamieh T, Rezzaki M, Schultz J: Study of the second order transitions and acid-base properties of polymers adsorbed on oxides, by using inverse gas chromatography at infinite dilution, II Experimental results. J. Colloid and Interface Science 2001; 233: 343-2. https://doi.org/10.1006/jcis.2000.7271 DOI: https://doi.org/10.1006/jcis.2000.7271

Hamieh T, Rezzaki M, Schultz J. Study of the transition temperatures and acid-base properties of poly (methyl methacrylate) adsorbed on alumina and silica, by using inverse gas chromatography technique. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2001; 189: 1-279. https://doi.org/10.1016/S0927-7757(01)00597-0 DOI: https://doi.org/10.1016/S0927-7757(01)00597-0

Hamieh T, Rezzaki M, Schultz J, Détermination des transitions vitreuses et locales du système PMMA/Al2O3 par des méthodes thermiques et chromatographiques. Journal of Thermal Analysis 1997; 51: 793. https://doi.org/10.1007/BF03341456 DOI: https://doi.org/10.1007/BF03341456

Gutmann V. The donor acceptor approach to molecular interactions”. Plenum Press: New York 1978. https://doi.org/10.1007/978-1-4615-8825-2 DOI: https://doi.org/10.1007/978-1-4615-8825-2

Brendlé E, Papirer E. A new topological index for molecular probes used in inverse gas chromatography. Journal of colloid and interface science 1994; 217-1. DOI: https://doi.org/10.1006/jcis.1997.5105

Qiu J, Matyjaszewski K, Polymerization of substituted styrenes by atom transfer radical polymerization. Macromolecules 1997; 30: 5643-19. https://doi.org/10.1021/ma9704222 DOI: https://doi.org/10.1021/ma9704222

Patten TE, Matyjaszewski K. Atom transfer radical polymerization and the synthesis of polymeric materials. Advanced Materials 1998; 10: 901-12. https://doi.org/10.1002/(SICI)1521-4095(199808)10:12<901::AID-ADMA901>3.0.CO;2-B DOI: https://doi.org/10.1002/(SICI)1521-4095(199808)10:12<901::AID-ADMA901>3.0.CO;2-B

Downloads

Published

2017-10-04

How to Cite

Rajab, M., Hamieh, T., Airoudj, A., Mougin, K., Hariri, K., Rammal, W., Mortada, H., Akil, M., Kassas, A., & Toufaily, J. (2017). Synthesis by ATRP of Polystyrene-b-Poly(4-vinylpyridine) and Characterization by Inverse Gas Chromatography. Journal of Research Updates in Polymer Science, 6(3), 76–89. https://doi.org/10.6000/1929-5995.2017.06.03.2

Issue

Section

Articles