Preparation and In Vitro Drug Release Behavior of 1,10-Phenanthroline/β-cyclodextrin–poly (Glycidyl Methacrylate) Drug-Loaded Microspheres

Authors

  • Ya Li Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uygur Autonomous Region, Xinjiang University, Urumqi 830046, China
  • Weijun Zhen Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uygur Autonomous Region, Xinjiang University, Urumqi 830046, China

DOI:

https://doi.org/10.6000/1929-5995.2017.06.03.3

Keywords:

glycidyl methacrylate, atom transfer radical polymerization, drug-loaded microspheres, star-shaped polymers, release kinetics

Abstract

In this study, novel star-shaped polymers of β-cyclodextrin (β-CD)–poly (glycidyl methacrylate) (PGMA) were prepared by atom transfer radical polymerization (ATRP), formed from GMA and β-CD. In addition, the structure, properties and hydrophilicity of the β-CD-PGMA polymers thus prepared were systematically analyzed. 1,10-phenanthroline monohydrate (Phen)/β-CD-PGMA drug-loaded microspheres were prepared by emulsion solvent evaporation. The optimum preparation conditions were determined by orthogonal tests. Analysis results indicated that the performance of star-shaped polymers of β-CD-PGMA clearly changes, resulting in the increase of the contact angle from 17° to 72.5°, and their thermal degradation temperature was enhanced from 260 °C to 401 °C. Moreover, β-CD-PGMA drug-loaded microspheres with a smooth, spherical surface were successfully prepared, and the drug-loading capacity and average particle size of drug-loaded microspheres were 26.67 % and 10 μm, respectively. Drug release tests indicated that the release behavior of β-CD-PGMA drug-loaded microspheres conformed to Higuchi release kinetics, which exhibited a significant drug delivery capability. The release rate and utilization of β-CD-PGMA were greater than that of β-CD, demonstrating that β-CD-PGMA was more suitable as a drug delivery material.

References

Saikia C, Hussain A, Ramteke A, Sharma HK, Deb P, Baji TK. Carboxymethyl starch-coated iron oxide magnetic nanoparticles: a potential drug delivery system for isoniazid. Iran Polym J 2015; 24: 815-28. https://doi.org/10.1007/s13726-015-0370-z DOI: https://doi.org/10.1007/s13726-015-0370-z

Chen WH, Luo GF, Lei Q, Cao FY, Fan JX, Qiu WX. Rational design of multifunctional magnetic mesoporous silica nanoparticle for tumor-targeted magnetic resonance imaging and precise therapy. Biomaterials 2016; 76: 87-101. https://doi.org/10.1016/j.biomaterials.2015.10.053 DOI: https://doi.org/10.1016/j.biomaterials.2015.10.053

Sha K, Li DS, Li YP, Liu XT, Wang SW, Guan JQ, Wang JY. Synthesis, characterization, and micellization of an epoxy-based amphiphilic diblock copolymer of Ɛ-caprolactone and glycidyl methacrylate by enzymatic ring-opening polymerization and atom transfer radical polymerization. J Appl Polym Sci A: Polym Chem 2007; 45: 5037-49. https://doi.org/10.1002/pola.22000 DOI: https://doi.org/10.1002/pola.22000

Li JF, Yang HY, Zhang YJ, Jiang XT, GuoYB, An S, Ma HJ, He X, Jiang C. Choline derivate-modified doxorubicin loaded micelle for glioma therapy. Acs Appl Mater Inter 2015; 7: 21589-601. https://doi.org/10.1021/acsami.5b07045 DOI: https://doi.org/10.1021/acsami.5b07045

Bagheri M, Motirasoul F. Synthesis, characterization, and micellization of cholesteryl-modified amphiphilic poly (L-lactide)-block-poly (glycidyl methacrylate) as a nanocarrier for hydrophobic drugs. J Polym Res 2013; 20: 1-9. https://doi.org/10.1007/s10965-012-0059-3 DOI: https://doi.org/10.1007/s10965-012-0059-3

Nasr FH, Khoee S, Dehghan MM, Chaleshtori SS, Shafiee A. Preparation and evaluation of contact lenses embedded with polycaprolactone-based nanoparticles for ocular drug delivery. Biomacromolecules 2016; 17: 485-95. https://doi.org/10.1021/acs.biomac.5b01387 DOI: https://doi.org/10.1021/acs.biomac.5b01387

Canbolat MF, Celebioglu A, Uyar T. Drug delivery system based on cyclodextrin-naproxen inclusion complex incorporated in electrospun polycaprolactone nanofibers. Colloids Surf B: Biointerfaces 2014; 115: 15-21. https://doi.org/10.1016/j.colsurfb.2013.11.021 DOI: https://doi.org/10.1016/j.colsurfb.2013.11.021

Weber LM, Lopez CG, Anseth KS. Effects of PEG hydrogel crosslinking density on protein diffusion and encapsulated islet survival and function. J Biomed Mater Res A 2009; 90: 720-29. https://doi.org/10.1002/jbm.a.32134 DOI: https://doi.org/10.1002/jbm.a.32134

Hu JM, Zhang GY, Ge ZS, Liu SY. Stimuli-responsive tertiary amine methacrylate-based block copolymers: Synthesis, supramolecular self-assembly and functional applications. Prog Polym Sci 2014; 39: 1096-143. https://doi.org/10.1016/j.progpolymsci.2013.10.006 DOI: https://doi.org/10.1016/j.progpolymsci.2013.10.006

Aslan A, Çelik SÜ, Bozkurt A. Proton-conducting properties of the membranes based on poly (vinyl phosphonic acid) grafted poly (glycidyl methacrylate). Solid State Ionics 2009; 180: 1240-45. https://doi.org/10.1016/j.ssi.2009.07.003 DOI: https://doi.org/10.1016/j.ssi.2009.07.003

Zhou WQ, Gu TY, Su ZG, Ma GH. Synthesis of macroporous poly (glycidyl methacrylate) microspheres by surfactant reverse micelles swelling method. Eur Polym J 2007; 43: 4493-502. https://doi.org/10.1016/j.eurpolymj.2007.07.010 DOI: https://doi.org/10.1016/j.eurpolymj.2007.07.010

Chung JE, Yokoyama M, Yamato M, Aoyagi T, Sakurai Y, Okano T. Thermo-responsive drug delivery from polymeric micelles constructed using block copolymers of poly (N-isopropylacrylamide) and poly (butylmethacrylate). J Controll Release 1999; 62, 115-27. https://doi.org/10.1016/S0168-3659(99)00029-2 DOI: https://doi.org/10.1016/S0168-3659(99)00029-2

Xu FJ, Zhang ZX, Ping Y, Li J, Kang ET, Neoh KG. Star-shaped cationic polymers by atom transfer radical polymerization from β-cyclodextrin cores for nonviral gene delivery. Biomacromolecules 2009; 10: 285-93. https://doi.org/10.1021/bm8010165 DOI: https://doi.org/10.1021/bm8010165

Xu LJ, Liang XY, Zhang L, Wu JB, Li ZX, Yu MM, Wei LH. The vesicle formation of β-CD and AD self-assembly of dumbbell-shaped amphiphilic triblock copolymer. Colloid Polym Sci 2016; 294: 145-55. https://doi.org/10.1007/s00396-015-3758-6 DOI: https://doi.org/10.1007/s00396-015-3758-6

Khodaverdi E, Aboumaashzadeh M, Tekie FSM, Hadizadeh F, Tabassi SAS, Mohajeri SA, Khashyarmanesh Z, Haghighi HM. Sustained drug release using supramolecular hydrogels composed of cyclodextrin inclusion complexes with PCL/PEG multiple block copolymers. Iran Polym J 2014; 23: 707-16. https://doi.org/10.1007/s13726-014-0265-4 DOI: https://doi.org/10.1007/s13726-014-0265-4

Gao H, Wang YN, Fan YG, Ma JB. Synthesis of a biodegradable tadpole-shaped polymer via the coupling reaction of polylactide onto mono (6-(2-aminoethyl) amino-6-deoxy)-β-cyclodextrin and its properties as the new carrier of protein delivery system. J Controlled Release 2005; 107: 158-73. https://doi.org/10.1016/j.jconrel.2005.06.010 DOI: https://doi.org/10.1016/j.jconrel.2005.06.010

Khan AR, Forgo P, Stine KJ, Valerian. Methods for selective modifications of cyclodextrins. Chem Rev 1998; 98: 1977-96. https://doi.org/10.1021/cr970012b DOI: https://doi.org/10.1021/cr970012b

Haroun AA, El-Halawany NR. Encapsulation of bovine serum albumin within β-cyclodextrin/gelatin-based polymeric hydrogel for controlled protein drug release. IRBM 2010; 31: 234-41. https://doi.org/10.1016/j.irbm.2010.02.001 DOI: https://doi.org/10.1016/j.irbm.2010.02.001

Xin Y, Wang H, Liu BW, Yuan JY. Synthesis and MALDI-TOF characterization of β-CD core ATRP initiators and RAFT chain transfers with different degrees of substitution. Chin J Polym Sci 2015; 33: 36-48. https://doi.org/10.1007/s10118-015-1572-8 DOI: https://doi.org/10.1007/s10118-015-1572-8

Shi HH, Lin CC. Photoclick hydrogels prepared from functionalized cyclodextrin and poly (ethylene glycol) for drug delivery and in situ cell encapsulation. Biomacromolecules 2015; 6: 1915-23. https://doi.org/10.1021/acs.biomac.5b00471 DOI: https://doi.org/10.1021/acs.biomac.5b00471

Huang Y, Fan XD. Synthesis and properties of hydrogels of poly (acrylic-co-acroloyl β-cyclodextrin). J Appl Polym Sci 2009; 113: 3068-77. https://doi.org/10.1002/app.30259 DOI: https://doi.org/10.1002/app.30259

Georgiou TK, Vamvakaki M, Patrickios CS. Nanoscopic cationic methacrylate star homopolymers: synthesis by group transfer polymerization, characterization and evaluation as transfection reagents. Biomacromolecules 2004; 5: 2221-29. https://doi.org/10.1021/bm049755e DOI: https://doi.org/10.1021/bm049755e

París R, Fuente JLDL. Synthesis of epoxy functionalized four-armed star diblock copolymers by atom transfer radical polymerization. React Funct Polym 2008; 68: 1004-12. https://doi.org/10.1016/j.reactfunctpolym.2008.02.011 DOI: https://doi.org/10.1016/j.reactfunctpolym.2008.02.011

Ren Q, Xiang YL, Huang CY, Li J, Wang CY. Epoxy-functionalized star-shaped polymers as novel tougheners for epoxy resin. Polym Bull 2015; 72: 2949-65. https://doi.org/10.1007/s00289-015-1446-9 DOI: https://doi.org/10.1007/s00289-015-1446-9

Szejtli J. Introduction and general overview of cyclodextrin chemistry. Chem Rev 1998; 98: 1743-54. https://doi.org/10.1021/cr970022c DOI: https://doi.org/10.1021/cr970022c

Haloi DJ, Mandal P, Singha NK. Atom transfer radical polymerization of glycidyl methacrylate (GMA) in emulsion. J Macromol Sci A 2013; 50: 121-27. https://doi.org/10.1080/10601325.2013.736270 DOI: https://doi.org/10.1080/10601325.2013.736270

Sun Y, Du H, Lan Y. Preparation and properties of fluorinated amphiphilic copolymers via iron-mediated AGET ATRP. Iran Polym J 2015; 24: 95-103. https://doi.org/10.1007/s13726-014-0303-2 DOI: https://doi.org/10.1007/s13726-014-0303-2

Li RQ, Niu YL, Zhao NN, Yu BR, Mao C, Xu FJ. Series of New β-Cyclodextrin-Cored Starlike Carriers for Gene Delivery. ACS Appl Mater Inter 2014; 6: 3969-78. https://doi.org/10.1021/am5005255 DOI: https://doi.org/10.1021/am5005255

Xu FJ, Wang ZH, Yang WT. Surface functionalization of polycaprolactone films via surface-initiated atom transfer radical polymerization for covalently coupling cell-adhesive biomolecules. Biomaterials 2010; 31: 3139-47. https://doi.org/10.1016/j.biomaterials.2010.01.032 DOI: https://doi.org/10.1016/j.biomaterials.2010.01.032

Zhang YZ, Li HQ, Li H, Li R, Xiao CF. Preparation and characterization of modified polyvinyl alcohol ultrafiltration membranes. Desalination 2006; 192: 214-23. https://doi.org/10.1016/j.desal.2005.07.037 DOI: https://doi.org/10.1016/j.desal.2005.07.037

Xu FJ, Li H, Li J, Zhang ZX, Kang ET, Neoh KG. Pentablock copolymers of poly (ethylene glycol), poly ((2-dimethyl amino) ethyl methacrylate) and poly (2-hydroxyethyl methacrylate) from consecutive atom transfer radical polymerizations for non-viral gene delivery. Biomaterials 2008; 29: 3023-33. https://doi.org/10.1016/j.biomaterials.2008.03.041 DOI: https://doi.org/10.1016/j.biomaterials.2008.03.041

Hu XT, Wei BX, Li HY, Wu CS, Bai YX, Xu XM, Jin ZY, Tian YQ. Preparation of the β-cyclodextrin-vitamin C (β-CD-Vc) inclusion complex under high hydrostatic pressure (HHP). Carbohyd Polym 2012; 90: 1193-96. https://doi.org/10.1016/j.carbpol.2012.06.029 DOI: https://doi.org/10.1016/j.carbpol.2012.06.029

Li QL, Wang LZ, Qiu XL, Sun YL, Wang PX, Liu Y, Li F, Qi AD, Gao H, Yang YW. Stimuli-responsive biocompatible nanovalves based on β-cyclodextrin modified poly (glycidyl methacrylate). Polym Chem 2014; 5: 3389-95. https://doi.org/10.1039/c4py00041b DOI: https://doi.org/10.1039/c4py00041b

Iliescu T, Baia M, Miclăuş V. A raman spectroscopic study of the diclofenac sodium–β-cyclodextrin interaction. Eur J Pharm Sci 2004; 22: 487-95. https://doi.org/10.1016/j.ejps.2004.05.003 DOI: https://doi.org/10.1016/j.ejps.2004.05.003

Li QQ, Du YP, Tang HR, Wang X, Chen GP, Iqbal J, Wang WM, Zhang WB. Ultra sensitive surface-enhanced Raman scattering detection based on monolithic column as a new type substrate. J Raman Spectrosc 2012; 43: 1392-96. https://doi.org/10.1002/jrs.4095 DOI: https://doi.org/10.1002/jrs.4095

Zou Y, Armstrong SR, Jessop JLP. Apparent conversion of adhesive resin in the hybrid layer, Part 1: identification of an internal reference for raman spectroscopy and the effects of water storage. J Biomed Mater Res A 2008; 86: 883-91. https://doi.org/10.1002/jbm.a.31684 DOI: https://doi.org/10.1002/jbm.a.31684

Xu Y, Yuan J, Müller AHE. Single-molecular hybrid nano-cylinders: Attaching polyhedral oligomeric silsesquioxane covalently to poly (glycidyl methacrylate) cylindrical brushes. Polymer 2009; 50: 5933-39. https://doi.org/10.1016/j.polymer.2009.10.029 DOI: https://doi.org/10.1016/j.polymer.2009.10.029

Krishnan R, Srinivasan KSV. Room temperature atom transfer radical polymerization of glycidyl methacrylate mediated by copper (I)/N-alkyl-2-pyridylmethanimine complexes. Macromolecules 2004; 37: 3614-22. https://doi.org/10.1021/ma0359032 DOI: https://doi.org/10.1021/ma0359032

Nanjundan S, Unnithan CS, Selvamalar CSJ, Penlidis A. Homopolymer of 4-benzoylphenyl methacrylate and its copolymers with glycidyl methacrylate: synthesis, characterization, monomer reactivity ratios and application as adhesives. React Funct Polym 2005; 62: 11-24. https://doi.org/10.1016/j.reactfunctpolym.2004.08.006 DOI: https://doi.org/10.1016/j.reactfunctpolym.2004.08.006

Pralhad T, Rajendrakumar K. Study of freeze-dried quercetin–cyclodextrin binary systems by DSC, FT-IR, X-ray diffraction and SEM analysis. J Pharm Biomed Anal 2004; 34: 333-39. https://doi.org/10.1016/S0731-7085(03)00529-6 DOI: https://doi.org/10.1016/S0731-7085(03)00529-6

Çelik SÜ, Bozkurt A. Preparation and proton conductivity of acid-doped 5-aminotetrazole functional poly (glycidyl methacrylate). Eur Polym J 2008; 44: 213-18. https://doi.org/10.1016/j.eurpolymj.2007.10.010 DOI: https://doi.org/10.1016/j.eurpolymj.2007.10.010

Chen FM, Wu ZF, Sun HH,Wu H, Xin SN. Release of bioactive BMP from dextran-derived microspheres: a novel delivery concept. Int J Pharm 2006; 307: 23-32. https://doi.org/10.1016/j.ijpharm.2005.09.024 DOI: https://doi.org/10.1016/j.ijpharm.2005.09.024

Anirudhan TS, Divya PL, Nima J. Synthesis and characterization of novel drug delivery system using modified chitosan based hydrogel grafted with cyclodextrin. Chem Eng J 2016; 284: 1259-69. https://doi.org/10.1016/j.cej.2015.09.057 DOI: https://doi.org/10.1016/j.cej.2015.09.057

Anirudhan TS, Divya PL, Nima J. Synthesis and characterization of silane coated magnetic nanoparticles/ glycidylmethacrylate-grafted-maleated cyclodextrin composite hydrogel as a drug carrier for the controlled delivery of 5-fluorouracil. Mater Sci Eng C 2015; 55: 471-81. https://doi.org/10.1016/j.msec.2015.05.068 DOI: https://doi.org/10.1016/j.msec.2015.05.068

Downloads

Published

2017-10-04

How to Cite

Li, Y., & Zhen, W. (2017). Preparation and In Vitro Drug Release Behavior of 1,10-Phenanthroline/β-cyclodextrin–poly (Glycidyl Methacrylate) Drug-Loaded Microspheres. Journal of Research Updates in Polymer Science, 6(3), 90–101. https://doi.org/10.6000/1929-5995.2017.06.03.3

Issue

Section

Articles