Recent Advances in Biodegradable Polymers
DOI:
https://doi.org/10.6000/1929-5995.2018.07.02.3Keywords:
Biodegradable polymers, polymer blends, 3D printing, carbon dioxide, renewable resources.Abstract
Biodegradable polymers are important as an alternative to conventional non-degradable polymers for sustainable eco-system. The recent trends indicate that the new developments in biodegradable polymers focus on novel polymer systems that can cater the need of biomedical and packaging applications in-terms of performance and economics. The new interest is rapidly moving toward reducing carbon footprint through utilization of carbon dioxide and developing new methods of manufacturing such as 3D printing for specific purposes. This review focus on the present state-of-art and recent developments in biodegradable polymers covering their sources, synthetic methodologies, salient properties, degradation patterns, polymer blends and nanocomposites. As well as biodegradable polymers as a 3D printing material and the use of carbon dioxide as a renewable raw material for biomedical and packaging applications.
References
Nair LS, Laurencin CT. Biodegradable polymers as biomaterials. Progress in polymer science 2007; 32(8-9): 762-98. https://doi.org/10.1016/j.progpolymsci.2007.05.017 DOI: https://doi.org/10.1016/j.progpolymsci.2007.05.017
Chandra RU. Biodegradable polymers. Progress in polymer science 1998; 23: 1273-335. https://doi.org/10.1016/S0079-6700(97)00039-7 DOI: https://doi.org/10.1016/S0079-6700(97)00039-7
Sudesh K, Abe H, Doi Y. Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Progress in polymer science 2000; 25(10): 1503-55. https://doi.org/10.1016/S0079-6700(00)00035-6 DOI: https://doi.org/10.1016/S0079-6700(00)00035-6
Rai R, Tallawi M, Grigore A, Boccaccini AR. Synthesis, properties and biomedical applications of poly (glycerol sebacate)(PGS): a review. Progress in polymer science 2012; 37(8): 1051-78. https://doi.org/10.1016/j.progpolymsci.2012.02.001 DOI: https://doi.org/10.1016/j.progpolymsci.2012.02.001
Vert M. Polymeric biomaterials: strategies of the past vs. strategies of the future. Progress in Polymer Science 2007; 32(8-9): 755-61. https://doi.org/10.1016/j.progpolymsci.2007.05.006 DOI: https://doi.org/10.1016/j.progpolymsci.2007.05.006
Pasut G, Veronese FM. Polymer–drug conjugation, recent achievements and general strategies. Progress in polymer science 2007; 32(8-9): 933-61. https://doi.org/10.1016/j.progpolymsci.2007.05.008 DOI: https://doi.org/10.1016/j.progpolymsci.2007.05.008
Varma IK, Albertsson AC, Rajkhowa R, Srivastava RK. Enzyme catalyzed synthesis of polyesters. Progress in Polymer Science 2005; 30(10): 949-81. https://doi.org/10.1016/j.progpolymsci.2005.06.010
Rasal RM, Janorkar AV, Hirt DE. Poly (lactic acid) modifications. Progress in polymer science 2010; 35(3): 338-56. https://doi.org/10.1016/j.progpolymsci.2009.12.003 DOI: https://doi.org/10.1016/j.progpolymsci.2009.12.003
Okada M. Chemical syntheses of biodegradable polymers. Progress in polymer science 2002; 27(1): 87-133. https://doi.org/10.1016/S0079-6700(01)00039-9 DOI: https://doi.org/10.1016/S0079-6700(01)00039-9
Yu L, Dean K, Li L. Polymer blends and composites from renewable resources. Progress in polymer science 2006; 31(6): 576-602. https://doi.org/10.1016/j.progpolymsci.2006.03.002 DOI: https://doi.org/10.1016/j.progpolymsci.2006.03.002
Södergård A, Stolt M. Properties of lactic acid based polymers and their correlation with composition. Progress in polymer science 2002; 27(6): 1123-63. https://doi.org/10.1016/S0079-6700(02)00012-6 DOI: https://doi.org/10.1016/S0079-6700(02)00012-6
Fenouillot F, Rousseau A, Colomines G, Saint-Loup R, Pascault JP. Polymers from renewable 1, 4: 3, 6-dianhydrohexitols (isosorbide, isomannide and isoidide): A review. Progress in Polymer Science 2010; 35(5): 578-622. https://doi.org/10.1016/j.progpolymsci.2009.10.001 DOI: https://doi.org/10.1016/j.progpolymsci.2009.10.001
Nishat N, Malik A. Biodegradable coordination polymer: Polycondensation of glutaraldehyde and starch in complex formation with transition metals Mn (II), Co (II), Ni (II), Cu (II) and Zn (II). Arabian Journal of Chemistry 2016; 9: S1824-32. DOI: https://doi.org/10.1016/j.arabjc.2012.05.002
Lima KO, Biduski B, da Silva WM, Ferreira SM, Montenegro LM, Dias AR, Bianchini D. Incorporation of tetraethylorthosilicate (TEOS) in biodegradable films based on bean starch (Phaseolus vulgaris). European Polymer Journal 2017; 89: 162-73. https://doi.org/10.1016/j.eurpolymj.2017.02.008 DOI: https://doi.org/10.1016/j.eurpolymj.2017.02.008
Mendes JF, Paschoalin RT, Carmona VB, Neto AR, Marques AC, Marconcini JM, Mattoso LH, Medeiros ES, Oliveira JE. Biodegradable polymer blends based on corn starch and thermoplastic chitosan processed by extrusion. Carbohydrate polymers 2016; 137: 452-8. https://doi.org/10.1016/j.carbpol.2015.10.093 DOI: https://doi.org/10.1016/j.carbpol.2015.10.093
Gołacki K, Stropek Z, Kołodziej P, Gładyszewska B, Rejak A, Mościcki L, Boryga M. Studies on stress relaxation process in
biodegradable starch film. Agriculture and Agricultural Science Procedia 2015; 7: 80-6. https://doi.org/10.1016/j.aaspro.2015.12.038 DOI: https://doi.org/10.1016/j.aaspro.2015.12.038
Farah NH, Salmah H, Marliza M. Effect of butyl methacrylate on properties of regenerated cellulose coconut shell biocomposite films. Procedia Chemistry 2016; 19: 335-9. https://doi.org/10.1016/j.proche.2016.03.020 DOI: https://doi.org/10.1016/j.proche.2016.03.020
Zailuddin NL, Husseinsyah S. Tensile properties and morphology of oil palm empty fruit bunch regenerated cellulose biocomposite films. Procedia Chemistry 2016; 19: 366-72. https://doi.org/10.1016/j.proche.2016.03.025 DOI: https://doi.org/10.1016/j.proche.2016.03.025
Mostafa NA, Farag AA, Abo-dief HM, Tayeb AM. Production of biodegradable plastic from agricultural wastes. Arabian journal of chemistry 2015.
Pelissari FM, Andrade-Mahecha MM, do Amaral Sobral PJ, Menegalli FC. Nanocomposites based on banana starch reinforced with cellulose nanofibers isolated from banana peels. Journal of colloid and interface science 2017; 505: 154-67. https://doi.org/10.1016/j.jcis.2017.05.106 DOI: https://doi.org/10.1016/j.jcis.2017.05.106
Kim I, Yi MJ, Byun SH, Park DW, Kim BU, Ha CS. Biodegradable polycarbonate synthesis by copolymerization of carbon dioxide with epoxides using a heterogeneous zinc complex. InMacromolecular Symposia 2005 Apr (Vol. 224, No. 1, pp. 181-192). Weinheim: WILEY‐VCH Verlag. DOI: https://doi.org/10.1002/masy.200550616
Cuesta-Aluja L, Castilla J, Masdeu-Bultó AM, Henriques CA, Calvete MJ, Pereira MM. Halogenated meso-phenyl Mn (III) porphyrins as highly efficient catalysts for the synthesis of polycarbonates and cyclic carbonates using carbon dioxide and epoxides. Journal of Molecular Catalysis A: Chemical 2016; 423: 489-94. https://doi.org/10.1016/j.molcata.2015.10.025 DOI: https://doi.org/10.1016/j.molcata.2015.10.025
Lu XB, Liang B, Zhang YJ, Tian YZ, Wang YM, Bai CX, Wang H, Zhang R. Asymmetric catalysis with CO2: Direct synthesis of optically active propylene carbonate from racemic epoxides. Journal of the American Chemical Society 2004; 126(12): 3732-3. https://doi.org/10.1021/ja049734s DOI: https://doi.org/10.1021/ja049734s
Geschwind J, Wurm F, Frey H. From CO2‐Based Multifunctional Polycarbonates With a Controlled Number of Functional Groups to Graft Polymers. Macromolecular Chemistry and Physics 2013; 214(8): 892-901. https://doi.org/10.1002/macp.201200608 DOI: https://doi.org/10.1002/macp.201200608
Hilf J, Schulze P, Seiwert J, Frey H. Controlled Synthesis of Multi‐Arm Star Polyether–Polycarbonate Polyols Based on Propylene Oxide and CO2. Macromolecular rapid communications 2014; 35(2): 198-203. https://doi.org/10.1002/marc.201300663 DOI: https://doi.org/10.1002/marc.201300663
Liu Y, Deng K, Wang S, Xiao M, Han D, Meng Y. A novel biodegradable polymeric surfactant synthesized from carbon dioxide, maleic anhydride and propylene epoxide. Polymer Chemistry 2015; 6(11): 2076-83. https://doi.org/10.1039/C4PY01801J DOI: https://doi.org/10.1039/C4PY01801J
Tao J, Song C, Cao M, Hu D, Liu L, Liu N, Wang S. Thermal properties and degradability of poly (propylene carbonate)/ poly (β-hydroxybutyrate-co-β-hydroxyvalerate)(PPC/PHBV) blends. Polymer Degradation and Stability 2009; 94(4): 575-83. https://doi.org/10.1016/j.polymdegradstab.2009.01.017 DOI: https://doi.org/10.1016/j.polymdegradstab.2009.01.017
Hwang Y, Jung J, Ree M, Kim H. Terpolymerization of CO2 with propylene oxide and ε-caprolactone using zinc glutarate catalyst. Macromolecules 2003; 36(22): 8210-2. https://doi.org/10.1021/ma034498b DOI: https://doi.org/10.1021/ma034498b
Sabantina L, Kinzel F, Ehrmann A, Finsterbusch K. Combining 3D printed forms with textile structures-mechanical and geometrical properties of multi-material systems. InIOP Conference Series: Materials Science and Engineering 2015 (Vol. 87, No. 1, p. 012005). IOP Publishing. DOI: https://doi.org/10.1088/1757-899X/87/1/012005
Yuryev Y, Mohanty AK, Misra M. Hydrolytic stability of polycarbonate/poly (lactic acid) blends and its evaluation via poly (lactic) acid median melting point depression. Polymer Degradation and Stability 2016; 134: 227-36. https://doi.org/10.1016/j.polymdegradstab.2016.10.011 DOI: https://doi.org/10.1016/j.polymdegradstab.2016.10.011
Holländer J, Genina N, Jukarainen H, Khajeheian M, Rosling A, Mäkilä E, Sandler N. Three-dimensional printed PCL-based implantable prototypes of medical devices for controlled drug delivery. Journal of pharmaceutical sciences 2016; 105(9): 2665-76. https://doi.org/10.1016/j.xphs.2015.12.012 DOI: https://doi.org/10.1016/j.xphs.2015.12.012
Kuang TR, Mi HY, Fu DJ, Jing X, Chen BY, Mou WJ, Peng XF. Fabrication of poly (lactic acid)/graphene oxide foams with highly oriented and elongated cell structure via unidirectional foaming using supercritical carbon dioxide. Industrial & Engineering Chemistry Research 2015; 54(2): 758-68. https://doi.org/10.1021/ie503434q DOI: https://doi.org/10.1021/ie503434q
Zhou Y, Lei L, Yang B, Li J, Ren J. Preparation of PLA-based nanocomposites modified by nano-attapulgite with good toughness-strength balance. Polymer Testing 2017; 60: 78-83. https://doi.org/10.1016/j.polymertesting.2017.03.007 DOI: https://doi.org/10.1016/j.polymertesting.2017.03.007
Esmaeilzadeh J, Hesaraki S, Hadavi SM, Ebrahimzadeh MH, Esfandeh M. Poly (d/l) lactide/polycaprolactone/bioactive glasss nanocomposites materials for anterior cruciate ligament reconstruction screws: The effect of glass surface functionalization on mechanical properties and cell behaviors. Materials Science and Engineering: C 2017; 77: 978-89. https://doi.org/10.1016/j.msec.2017.03.134 DOI: https://doi.org/10.1016/j.msec.2017.03.134
Seoane IT, Manfredi LB, Cyras VP. Properties and processing relationship of polyhydroxybutyrate and cellulose biocomposites. Procedia Materials Science 2015; 8: 807-13. https://doi.org/10.1016/j.mspro.2015.04.139 DOI: https://doi.org/10.1016/j.mspro.2015.04.139
Nishat N, Malik A. Synthesis, spectral characterization thermal stability, antimicrobial studies and biodegradation of starch–thiourea based biodegradable polymeric ligand and its coordination complexes with [Mn (II), Co (II), Ni (II), Cu (II), and Zn (II)] metals. Journal of Saudi Chemical Society 2016; 20: S7-15. https://doi.org/10.1016/j.jscs.2012.07.017 DOI: https://doi.org/10.1016/j.jscs.2012.07.017
Souza AC, Benze RF, Ferrão ES, Ditchfield C, Coelho AC, Tadini CC. Cassava starch biodegradable films: Influence of glycerol and clay nanoparticles content on tensile and barrier properties and glass transition temperature. LWT-Food Science and Technology 2012; 46(1): 110-7. https://doi.org/10.1016/j.lwt.2011.10.018 DOI: https://doi.org/10.1016/j.lwt.2011.10.018
Li Y, Tan Y, Xu K, Lu C, Wang P. A biodegradable starch hydrogel synthesized via thiol-ene click chemistry. Polymer Degradation and Stability 2017; 137: 75-82. https://doi.org/10.1016/j.polymdegradstab.2016.07.015 DOI: https://doi.org/10.1016/j.polymdegradstab.2016.07.015
Biduski B, da Silva FT, da Silva WM, El Halal SL, Pinto VZ, Dias AR, da Rosa Zavareze E. Impact of acid and oxidative modifications, single or dual, of sorghum starch on biodegradable films. Food chemistry 2017; 214: 53-60. https://doi.org/10.1016/j.foodchem.2016.07.039 DOI: https://doi.org/10.1016/j.foodchem.2016.07.039
Arolkar GA, Salgo MJ, Kelkar-Mane V, Deshmukh RR. The study of air-plasma treatment on corn starch/poly (ε-caprolactone) films. Polymer Degradation and Stability 2015; 120: 262-72. https://doi.org/10.1016/j.polymdegradstab.2015.07.016 DOI: https://doi.org/10.1016/j.polymdegradstab.2015.07.016
Brandelero RP, Grossmann MV, Yamashita F. Effect of the method of production of the blends on mechanical and structural properties of biodegradable starch films produced by blown extrusion. Carbohydrate Polymers 2011; 86(3): 1344-50. https://doi.org/10.1016/j.carbpol.2011.06.045 DOI: https://doi.org/10.1016/j.carbpol.2011.06.045
Andrade-Mahecha MM, Pelissari FM, Tapia-Blácido DR, Menegalli FC. Achira as a source of biodegradable materials: Isolation and characterization of nanofibers. Carbohydrate polymers 2015; 123: 406-15. https://doi.org/10.1016/j.carbpol.2015.01.027 DOI: https://doi.org/10.1016/j.carbpol.2015.01.027
Barari B, Pillai KM. Green composites made from cellulose nanofibers and bio-based epoxy: Processing, performance, and applications. In Natural Fiber-Reinforced Biodegradable and Bioresorbable Polymer Composites 2017 (pp. 31-49). DOI: https://doi.org/10.1016/B978-0-08-100656-6.00003-0
Balakrishnan P, Sreekala MS, Kunaver M, Huskić M, Thomas S. Morphology, transport characteristics and viscoelastic polymer chain confinement in nanocomposites based on thermoplastic potato starch and cellulose nanofibers from pineapple leaf. Carbohydrate polymers 2017; 169: 176-88. https://doi.org/10.1016/j.carbpol.2017.04.017 DOI: https://doi.org/10.1016/j.carbpol.2017.04.017
Zhang CW, Li FY, Li JF, Wang LM, Xie Q, Xu J, Chen S. A new biodegradable composite with open cell by combining modified starch and plant fibers. Materials & Design 2017; 120: 222-9. https://doi.org/10.1016/j.matdes.2017.02.027 DOI: https://doi.org/10.1016/j.matdes.2017.02.027
Carothers WH. Studies on polymerization and ring formation. I. An introduction to the general theory of condensation polymers. Journal of the American Chemical Society 1929; 51(8): 2548-59. https://doi.org/10.1021/ja01383a041 DOI: https://doi.org/10.1021/ja01383a041
Bikiaris DN, Achilias DS. Synthesis of poly (alkylene succinate) biodegradable polyesters I. Mathematical modelling of the esterification reaction. Polymer 2006; 47(13): 4851-60. https://doi.org/10.1016/j.polymer.2006.04.044 DOI: https://doi.org/10.1016/j.polymer.2006.04.044
Bikiaris DN, Achilias DS. Synthesis of poly (alkylene succinate) biodegradable polyesters, Part II: Mathematical modelling of the polycondensation reaction. Polymer 2008; 49(17): 3677-85. https://doi.org/10.1016/j.polymer.2008.06.026 DOI: https://doi.org/10.1016/j.polymer.2008.06.026
Gümther B, Zachmann HG. Influence of molar mass and catalysts on the kinetics of crystallization and on the orientation of poly (ethylene terephthalate). Polymer 1983; 24(8): 1008-14. https://doi.org/10.1016/0032-3861(83)90152-0 DOI: https://doi.org/10.1016/0032-3861(83)90152-0
Tomita K, Ida H. Studies on the formation of poly (ethylene terephthalate): 2. Rate of transesterification of dimethyl terephthalate with ethylene glycol. Polymer 1973; 14(2): 55-60. https://doi.org/10.1016/0032-3861(73)90096-7 DOI: https://doi.org/10.1016/0032-3861(73)90096-7
Shah TH, Bhatty JI, Gamlen GA, Dollimore D. Aspects of the chemistry of poly (ethylene terephthalate): 5. Polymerization of bis (hydroxyethyl) terephthalate by various metallic catalysts. Polymer 1984; 25(9): 1333-6. https://doi.org/10.1016/0032-3861(84)90386-0 DOI: https://doi.org/10.1016/0032-3861(84)90386-0
Pang K, Kotek R, Tonelli A. Review of conventional and novel polymerization processes for polyesters. Progress in polymer science 2006; 31(11): 1009-37. https://doi.org/10.1016/j.progpolymsci.2006.08.008 DOI: https://doi.org/10.1016/j.progpolymsci.2006.08.008
Evtushenko YM, Krushevskii GA, Miroshnikov YP, Zaitsev BE, Konstant OD. Tetrabutoxytitanium adduct formation in esterification reactions. Theoretical Foundations of Chemical Engineering 2009; 43(5): 771. https://doi.org/10.1134/S0040579509050285 DOI: https://doi.org/10.1134/S0040579509050285
Deming TJ. Synthetic polypeptides for biomedical applications. Progress in Polymer Science 2007; 32(8-9): 858-75. https://doi.org/10.1016/j.progpolymsci.2007.05.010 DOI: https://doi.org/10.1016/j.progpolymsci.2007.05.010
Yu M, Nowak AP, Deming TJ, Pochan DJ. Methylated mono-and diethyleneglycol functionalized polylysines: nonionic, α-helical, water-soluble polypeptides. Journal of the American Chemical Society 1999; 121(51): 12210-1. https://doi.org/10.1021/ja993637v DOI: https://doi.org/10.1021/ja993637v
Guo J, Huang Y, Jing X, Chen X. Synthesis and characterization of functional poly (γ-benzyl-l-glutamate)(PBLG) as a hydrophobic precursor. Polymer 2009; 50(13): 2847-55. https://doi.org/10.1016/j.polymer.2009.04.016 DOI: https://doi.org/10.1016/j.polymer.2009.04.016
Dhamaniya S, Jacob J. Synthesis and characterization of copolyesters based on tartaric acid derivatives. Polymer bulletin 2012; 68(5): 1287-304. https://doi.org/10.1007/s00289-011-0606-9 DOI: https://doi.org/10.1007/s00289-011-0606-9
Dhamaniya S, Jacob J. Synthesis and characterization of polyesters based on tartaric acid derivatives. Polymer 2010; 51(23): 5392-9. https://doi.org/10.1016/j.polymer.2010.09.034 DOI: https://doi.org/10.1016/j.polymer.2010.09.034
Feldmann J, Koebernick H, Richter K, Woelk HU, inventors; Unilever Bestfoods North America Inc, assignee. Process for recovering pure crystalline monoanhydrohexitols and dianhydrohexitols. United States patent US 4,564,692 1986 Jan 14.
Okada M, Okada Y, Tao A, Aoi K. Biodegradable polymers based on renewable resources: Polyesters composed of 1, 4: 3, 6‐dianhydrohexitol and aliphatic dicarboxylic acid units. Journal of applied polymer science 1996; 62(13): 2257-65. https://doi.org/10.1002/(SICI)1097-4628(19961226)62:13<2257::AID-APP10>3.0.CO;2-0 DOI: https://doi.org/10.1002/(SICI)1097-4628(19961226)62:13<2257::AID-APP10>3.0.CO;2-0
Okada M, Tsunoda K, Tachikawa K, Aoi K. Biodegradable polymers based on renewable resources. IV. Enzymatic degradation of polyesters composed of 1, 4: 3.6‐dianhydro‐D‐glucitol and aliphatic dicarboxylic acid moieties. Journal of applied polymer science 2000; 77(2): 338-46. https://doi.org/10.1002/(SICI)1097-4628(20000711)77:2<338::AID-APP9>3.0.CO;2-C DOI: https://doi.org/10.1002/(SICI)1097-4628(20000711)77:2<338::AID-APP9>3.0.CO;2-C
Okada M, Aoi K. Biodegradable polymers from 1, 4: 3, 6-dianhydro-D-glucitol(Isosorbide) and its related compounds. Current Trends in Polymer Science 2002; 7: 57-70.
Braun D, Bergmann M. Polyesters with 1.4: 3.6‐dianhydrosorbitol as polymeric plasticizers for PVC. Die Angewandte Makromolekulare Chemie: Applied Macromolecular Chemistry and Physics 1992; 199(1): 191-205. https://doi.org/10.1002/apmc.1992.051990115 DOI: https://doi.org/10.1002/apmc.1992.051990115
Kricheldorf HR, Gomourachvili Z. Polyanhydrides 10. Aliphatic polyesters and poly (ester‐anhydride) s by polycondensation of silylated aliphatic diols. Macromolecular Chemistry and Physics 1997; 198(10): 3149-60. https://doi.org/10.1002/macp.1997.021981013 DOI: https://doi.org/10.1002/macp.1997.021981013
Kricheldorf HR, Masri MA. New polymer syntheses. LXXXII. Syntheses of poly (ether‐sulfone) s from silylated aliphatic diols including chiral monomers. Journal of Polymer Science Part A: Polymer Chemistry 1995; 33(15): 2667-71. https://doi.org/10.1002/pola.1995.080331513 DOI: https://doi.org/10.1002/pola.1995.080331513
Okada M, Tachikawa K, Aoi K. Biodegradable polymers based on renewable resources. II. Synthesis and biodegradability of polyesters containing furan rings. Journal of Polymer Science Part A: Polymer Chemistry 1997; 35(13): 2729-37. https://doi.org/10.1002/(SICI)1099-0518(19970930)35:13<2729::AID-POLA18>3.0.CO;2-D DOI: https://doi.org/10.1002/(SICI)1099-0518(19970930)35:13<2729::AID-POLA18>3.0.CO;2-D
Okada M, Tachikawa K, Aoi K. Biodegradable polymers based on renewable resources. III. copolyesters composed of 1, 4: 3, 6‐dianhydro‐D‐glucitol, 1, 1‐bis (5‐carboxy‐2‐furyl) ethane and aliphatic dicarboxylic acid units. Journal of applied polymer science 1999; 74(14): 3342-50. https://doi.org/10.1002/(SICI)1097-4628(19991227)74:14<3342::AID-APP7>3.0.CO;2-U DOI: https://doi.org/10.1002/(SICI)1097-4628(19991227)74:14<3342::AID-APP7>3.0.CO;2-U
Vogt S, Larcher Y, Beer B, Wilke I, Schnabelrauch M. Fabrication of highly porous scaffold materials based on functionalized oligolactides and preliminary results on their use in bone tissue engineering. Eur Cell Mater 2002; 4: 30-8. https://doi.org/10.22203/eCM.v004a03 DOI: https://doi.org/10.22203/eCM.v004a03
Noordover BA, van Staalduinen VG, Duchateau R, Koning CE, van Benthem RA, Mak M, Heise A, Frissen AE, van Haveren J. Co-and terpolyesters based on isosorbide and succinic acid for coating applications: synthesis and characterization. Biomacromolecules 2006; 7(12): 3406-16. https://doi.org/10.1021/bm060713v DOI: https://doi.org/10.1021/bm060713v
Noordover, B.A.J.; Sablong, R.J.; Duchateau, R.; Benthem, R.A.T.M. van; Ming, W.; Konning, C.; Haveren, J. van Process for the production of a dianhydrohexitol based polyester WO. Pat 2008031592, 2008
Van Haveren J, Oostveen EA, Micciche F, Noordover BA, Koning CE, Van Benthem RA, Frissen AE, Weijnen JG. Resins and additives for powder coatings and alkyd paints, based on renewable resources. Journal of Coatings Technology and Research 2007; 4(2): 177-86. https://doi.org/10.1007/s11998-007-9020-5 DOI: https://doi.org/10.1007/s11998-007-9020-5
Okada M, Yamada M, Yokoe M, Aoi K. Biodegradable polymers based on renewable resources. V. Synthesis and biodegradation behavior of poly (ester amide) s composed of 1, 4: 3, 6‐dianhydro‐d‐glucitol, α‐amino acid, and aliphatic dicarboxylic acid units. Journal of applied polymer science 2001; 81(11): 2721-34. https://doi.org/10.1002/app.1718 DOI: https://doi.org/10.1002/app.1718
Gomurashvili Z, Kricheldorf HR, Katsarava R. Amino acid based bioanalogous polymers. Synthesis and study of new poly (ester amide) s composed of hydrophobic α-amino acids and dianhydrohexitoles 2000; 37: 215. DOI: https://doi.org/10.1081/MA-100101089
Okada M, Yokoe M, Aoi K. Biodegradable polymers based on renewable resources. VI. Synthesis and biodegradability of poly (ester carbonate) s containing 1, 4: 3, 6‐dianhydro‐d‐glucitol and sebacic acid units. Journal of applied polymer science 2002; 86(4): 872-80. https://doi.org/10.1002/app.10995
Kricheldorf HR, Sun SJ, Gerken A, Chang TC. Polymers of carbonic acid. 22. Cholesteric polycarbonates derived from (S)-((2-methylbutyl) thio) hydroquinone or isosorbide. Macromolecules 1996; 29(25): 8077-82. https://doi.org/10.1021/ma960494d DOI: https://doi.org/10.1021/ma960494d
Okada M, Yokoe M, Aoi K. Biodegradable polymers based on renewable resources. VI. Synthesis and biodegradability of poly (ester carbonate) s containing 1, 4: 3, 6‐dianhydro‐d‐glucitol and sebacic acid units. Journal of applied polymer science 2002; 86(4): 872-80. https://doi.org/10.1002/app.10995 DOI: https://doi.org/10.1002/app.10995
Yokoe M, Aoi K, Okada M. Biodegradable polymers based on renewable resources. VII. Novel random and alternating copolycarbonates from 1, 4: 3, 6‐dianhydrohexitols and aliphatic diols. Journal of Polymer Science Part A: Polymer Chemistry 2003; 41(15): 2312-21. https://doi.org/10.1002/pola.10772 DOI: https://doi.org/10.1002/pola.10772
Yokoe M, Aoi K, Okada M. Biodegradable polymers based on renewable resources VIII. Environmental and enzymatic degradability of copolycarbonates containing 1, 4: 3, 6‐dianhydrohexitols. Journal of applied polymer science 2005; 98(4): 1679-87. https://doi.org/10.1002/app.22339 DOI: https://doi.org/10.1002/app.22339
Yokoe M, Aoi K, Okada M. Biodegradable polymers based on renewable resources. IX. Synthesis and degradation behavior of polycarbonates based on 1, 4: 3, 6‐dianhydrohexitols and tartaric acid derivatives with pendant functional groups. Journal of Polymer Science Part A: Polymer Chemistry 2005; 43(17): 3909-19. https://doi.org/10.1002/pola.20830 DOI: https://doi.org/10.1002/pola.20830
Saiyasombat W, Molloy R, Nicholson TM, Johnson AF, Ward IM, Poshyachinda S. Ring strain and polymerizability of cyclic esters. Polymer 1998; 39(23): 5581-5. https://doi.org/10.1016/S0032-3861(97)10370-6 DOI: https://doi.org/10.1016/S0032-3861(97)10370-6
Williams CK. Synthesis of functionalized biodegradable polyesters. Chemical Society Reviews 2007; 36(10): 1573-80. https://doi.org/10.1039/b614342n DOI: https://doi.org/10.1039/b614342n
Kamber NE, Jeong W, Waymouth RM, Pratt RC, Lohmeijer BG, Hedrick JL. Organocatalytic ring-opening polymerization. Chemical reviews 2007; 107(12): 5813-40. https://doi.org/10.1021/cr068415b DOI: https://doi.org/10.1021/cr068415b
Robert JL, Aubrecht KB. Ring-opening polymerization of lactide to form a biodegradable polymer. Journal of chemical education 2008; 85(2): 258. https://doi.org/10.1021/ed085p258 DOI: https://doi.org/10.1021/ed085p258
Gupta AP, Kumar V. New emerging trends in synthetic biodegradable polymers–Polylactide: A critique. European polymer journal 2007; 43(10): 4053-74. https://doi.org/10.1016/j.eurpolymj.2007.06.045 DOI: https://doi.org/10.1016/j.eurpolymj.2007.06.045
Albertsson AC, Varma IK. Recent developments in ring opening polymerization of lactones for biomedical applications. Biomacromolecules 2003; 4(6): 1466-86. https://doi.org/10.1021/bm034247a DOI: https://doi.org/10.1021/bm034247a
Albertsson AC, Varma IK. Aliphatic polyesters: synthesis, properties and applications. InDegradable Aliphatic Polyesters 2002 (pp. 1-40). Springer, Berlin, Heidelberg. DOI: https://doi.org/10.1007/3-540-45734-8_1
Wu JC, Huang BH, Hsueh ML, Lai SL, Lin CC. Ring-opening polymerization of lactide initiated by magnesium and zinc alkoxides. Polymer 2005; 46(23): 9784-92. https://doi.org/10.1016/j.polymer.2005.08.009 DOI: https://doi.org/10.1016/j.polymer.2005.08.009
Gowda RR, Chakraborty D. Zinc acetate as a catalyst for the bulk ring opening polymerization of cyclic esters and lactide. Journal of Molecular Catalysis A: Chemical 2010; 333(1-2): 167-72. https://doi.org/10.1016/j.molcata.2010.10.013 DOI: https://doi.org/10.1016/j.molcata.2010.10.013
Umare PS, Tembe GL, Rao KV, Satpathy US, Trivedi B. Catalytic ring-opening polymerization of l-lactide by titanium biphenoxy-alkoxide initiators. Journal of Molecular Catalysis A: Chemical 2007; 268(1-2): 235-43. https://doi.org/10.1016/j.molcata.2006.12.028 DOI: https://doi.org/10.1016/j.molcata.2006.12.028
Kim E, Shin EW, Yoo IK, Chung JS. Characteristics of heterogeneous titanium alkoxide catalysts for ring-opening polymerization of lactide to produce polylactide. Journal of Molecular Catalysis A: Chemical 2009; 298(1-2): 36-9. https://doi.org/10.1016/j.molcata.2008.09.029 DOI: https://doi.org/10.1016/j.molcata.2008.09.029
Stolt M, Södergård A. Use of monocarboxylic iron derivatives in the ring-opening polymerization of L-lactide. Macromolecules 1999; 32(20): 6412-7. https://doi.org/10.1021/ma9902753 DOI: https://doi.org/10.1021/ma9902753
Deng X, Yuan M, Li X, Xiong C. Polymerization of lactides and lactones: VII. Ring-opening polymerization of lactide by rare earth phenyl compounds. European Polymer Journal 2000; 36(6): 1151-6. https://doi.org/10.1016/S0014-3057(99)00172-X DOI: https://doi.org/10.1016/S0014-3057(99)00172-X
Chisholm MH, Gallucci JC, Krempner C. Ring-opening polymerization of l-lactide by organotin (IV) alkoxides, R2Sn(OPr-i) 2: Estimation of the activation parameters. Polyhedron 2007; 26(15): 4436-44. https://doi.org/10.1016/j.poly.2007.06.002 DOI: https://doi.org/10.1016/j.poly.2007.06.002
Wu J, Pan X, Tang N, Lin CC. Synthesis, characterization of aluminum complexes and the application in ring-opening polymerization of l-lactide. European Polymer Journal 2007; 43(12): 5040-6. https://doi.org/10.1016/j.eurpolymj.2007.06.041 DOI: https://doi.org/10.1016/j.eurpolymj.2007.06.041
Kricheldorf HR, Kreiser-Saunders I, Stricker A. Polylactones 48. SnOct2-initiated polymerizations of lactide: a mechanistic study. Macromolecules 2000; 33(3): 702-9. https://doi.org/10.1021/ma991181w DOI: https://doi.org/10.1021/ma991181w
Kowalski A, Libiszowski J, Biela T, Cypryk M, Duda A, Penczek S. Kinetics and mechanism of cyclic esters polymerization initiated with tin (II) octoate. Polymerization of ε-caprolactone and L, L-Lactide co-initiated with primary amines. Macromolecules 2005; 38(20): 8170-6. https://doi.org/10.1021/ma050752j DOI: https://doi.org/10.1021/ma050752j
Kowalski A, Duda A, Penczek S. Kinetics and mechanism of cyclic esters polymerization initiated with tin (II) octoate. 3. Polymerization of L, L-dilactide. Macromolecules 2000; 33(20): 7359-70. https://doi.org/10.1021/ma000125o DOI: https://doi.org/10.1021/ma000125o
Tian H, Tang Z, Zhuang X, Chen X, Jing X. Biodegradable synthetic polymers: preparation, functionalization and biomedical application. Progress in Polymer Science 2012; 37(2): 237-80. https://doi.org/10.1016/j.progpolymsci.2011.06.004 DOI: https://doi.org/10.1016/j.progpolymsci.2011.06.004
Kimura Y, Shirotani K, Yamane H, Kitao T. Ring-opening polymerization of 3 (S)-[(benzyloxycarbonyl) methyl]-1, 4-dioxane-2, 5-dione: a new route to a poly (. alpha.-hydroxy acid) with pendant carboxyl groups. Macromolecules 1988; 21(11): 3338-40. https://doi.org/10.1021/ma00189a037 DOI: https://doi.org/10.1021/ma00189a037
Trollsås M, Lee VY, Mecerreyes D, Löwenhielm P, Möller M, Miller RD, Hedrick JL. Hydrophilic aliphatic polyesters: design, synthesis, and ring-opening polymerization of functional cyclic esters. Macromolecules 2000; 33(13): 4619-27. https://doi.org/10.1021/ma992161x DOI: https://doi.org/10.1021/ma992161x
Gerhardt WW, Noga DE, Hardcastle KI, Garcia AJ, Collard DM, Weck M. Functional lactide monomers: Methodology and polymerization. Biomacromolecules 2006; 7(6): 1735-42. https://doi.org/10.1021/bm060024j DOI: https://doi.org/10.1021/bm060024j
Tian D, Dubois P, Grandfils C, Jérôme R. Ring-opening polymerization of 1, 4, 8-trioxaspiro [4.6]-9-undecanone: A new route to aliphatic polyesters bearing functional pendent groups. Macromolecules 1997; 30(3): 406-9. https://doi.org/10.1021/ma961631+ DOI: https://doi.org/10.1021/ma961631+
Tian D, Dubois P, Jérôme R. Macromolecular engineering of polylactones and polylactides. 22. Copolymerization of ε-caprolactone and 1, 4, 8-trioxaspiro [4.6]-9-undecanone initiated by aluminum isopropoxide. Macromolecules 1997; 30(9): 2575-81. https://doi.org/10.1021/ma961567w DOI: https://doi.org/10.1021/ma961567w
Tian D, Dubois P, Jérôme R. Macromolecular engineering of polylactones and polylactides. 23. Synthesis and characterization of biodegradable and biocompatible homopolymers and block copolymers based on 1, 4, 8-trioxa [4.6] spiro-9-undecanone. Macromolecules 1997; 30(7): 1947-54. https://doi.org/10.1021/ma961614k DOI: https://doi.org/10.1021/ma961614k
Tian D, Halleux O, Dubois P, Jérôme R, Sobry R, Van den Bossche G. Poly (2-oxepane-1, 5-dione): A highly crystalline modified poly (ε-caprolactone) of a high melting temperature. Macromolecules 1998; 31(3): 924-7. https://doi.org/10.1021/ma970903l DOI: https://doi.org/10.1021/ma970903l
Liu XQ, Wang MX, Li ZC, Li FM. Synthesis and ring‐opening polymerization of α‐chloromethyl‐α‐methyl‐β‐propiolactone. Macromolecular Chemistry and Physics 1999; 200(2): 468-73. https://doi.org/10.1002/(SICI)1521-3935(19990201)200:2<468::AID-MACP468>3.0.CO;2-N DOI: https://doi.org/10.1002/(SICI)1521-3935(19990201)200:2<468::AID-MACP468>3.0.CO;2-N
Mecerreyes D, Atthoff B, Boduch KA, Trollsås M, Hedrick JL. Unimolecular combination of an atom transfer radical polymerization initiator and a lactone monomer as a route to new graft copolymers. Macromolecules 1999; 32(16): 5175-82. https://doi.org/10.1021/ma982005a DOI: https://doi.org/10.1021/ma982005a
Al-Azemi TF, Bisht KS. Novel functional polycarbonate by lipase-catalyzed ring-opening polymerization of 5-methyl-5-benzyloxycarbonyl-1, 3-dioxan-2-one. Macromolecules 1999; 32(20): 6536-40. https://doi.org/10.1021/ma990639r DOI: https://doi.org/10.1021/ma990639r
Liu ZL, Zhou Y, Zhuo RX. Synthesis and properties of functional aliphatic polycarbonates. Journal of Polymer Science Part A: Polymer Chemistry 2003; 41(24): 4001-6. https://doi.org/10.1002/pola.11001 DOI: https://doi.org/10.1002/pola.11001
Sanda F, Kamatani J, Endo T. Synthesis and anionic ring-opening polymerization behavior of amino acid-derived cyclic carbonates. Macromolecules 2001; 34(6): 1564-9. https://doi.org/10.1021/ma0013307 DOI: https://doi.org/10.1021/ma0013307
Hu X, Chen X, Xie Z, Cheng H, Jing X. Aliphatic poly (ester‐carbonate) s bearing amino groups and its RGD peptide grafting. Journal of Polymer Science Part A: Polymer Chemistry 2008; 46(21): 7022-32. https://doi.org/10.1002/pola.23008 DOI: https://doi.org/10.1002/pola.23008
Lee RS, Yang JM, Lin TF. Novel, biodegradable, functional poly (ester‐carbonate) s by copolymerization of trans‐4‐hydroxy‐L‐proline with cyclic carbonate bearing a pendent carboxylic group. Journal of Polymer Science Part A: Polymer Chemistry 2004; 42(10): 2303-12. https://doi.org/10.1002/pola.20052 DOI: https://doi.org/10.1002/pola.20052
Wang XL, Zhuo RX, Liu LJ, He F, Liu G. Synthesis and characterization of novel aliphatic polycarbonates. Journal of Polymer Science Part A: Polymer Chemistry 2002; 40(1): 70-5. https://doi.org/10.1002/pola.10088 DOI: https://doi.org/10.1002/pola.10088
Yang J, Hao Q, Liu X, Ba C, Cao A. Novel biodegradable aliphatic poly (butylene succinate-co-cyclic carbonate)s with functionalizable carbonate building blocks. 1. Chemical synthesis and their structural and physical characterization. Biomacromolecules 2004; 5(1): 209-18. https://doi.org/10.1021/bm0343242 DOI: https://doi.org/10.1021/bm0343242
Guan HL, Xie ZG, Zhang PB, Wang X, Chen XS, Wang XH, Jing XB. Synthesis and characterization of novel biodegradable block copolymer poly (ethylene glycol)‐ block‐poly (L‐lactide‐co‐2‐methyl‐2‐carboxyl‐propylene carbonate). Journal of Polymer Science Part A: Polymer Chemistry 2005; 43(20): 4771-80. https://doi.org/10.1002/pola.20942 DOI: https://doi.org/10.1002/pola.20942
Xie Z, Hu X, Chen X, Sun J, Shi Q, Jing X. Synthesis and characterization of novel biodegradable poly (carbonate ester) s with photolabile protecting groups. Biomacromolecules 2007; 9(1): 376-80. https://doi.org/10.1021/bm700906k DOI: https://doi.org/10.1021/bm700906k
Hu X, Chen X, Cheng H, Jing X. Cinnamate‐functionalized poly (ester‐carbonate): Synthesis and its UV irradiation‐induced photo‐crosslinking. Journal of Polymer Science Part A: Polymer Chemistry 2009; 47(1): 161-9. https://doi.org/10.1002/pola.23134 DOI: https://doi.org/10.1002/pola.23134
Xie Z, Lu C, Chen X, Chen L, Wang Y, Hu X, Shi Q, Jing X. Synthesis and characterization of novel poly (ester carbonate) s based on pentaerythritol. Journal of Polymer Science Part A: Polymer Chemistry 2007; 45(9): 1737-45. https://doi.org/10.1002/pola.21941 DOI: https://doi.org/10.1002/pola.21941
Chen X, McCarthy SP, Gross RA. Synthesis, characterization, and epoxidation of an aliphatic polycarbonate from 2, 2-(2-pentene-1, 5-diyl) trimethylene carbonate (cHTC) ring-opening polymerization. Macromolecules 1997; 30(12): 3470-6. https://doi.org/10.1021/ma961821k DOI: https://doi.org/10.1021/ma961821k
Chen X, McCarthy SP, Gross RA. Synthesis, modification, and characterization of L-lactide/2, 2-[2-pentene-1, 5-diyl] trimethylene carbonate copolymers. Macromolecules 1998; 31(3): 662-8. https://doi.org/10.1021/ma971288o DOI: https://doi.org/10.1021/ma971288o
He F, Wang YP, Liu G, Jia HL, Feng J, Zhuo RX. Synthesis, characterization and ring-opening polymerization of a novel six-membered cyclic carbonate bearing pendent allyl ether group. Polymer 2008; 49(5): 1185-90. https://doi.org/10.1016/j.polymer.2008.01.025 DOI: https://doi.org/10.1016/j.polymer.2008.01.025
Cunningham A, Ko NR, Oh JK. Synthesis and reduction-responsive disassembly of PLA-based mono-cleavable micelles. Colloids and Surfaces B: Biointerfaces 2014; 122: 693-700. https://doi.org/10.1016/j.colsurfb.2014.08.002 DOI: https://doi.org/10.1016/j.colsurfb.2014.08.002
Xu J, Luan S, Qin B, Wang Y, Wang K, Qi P, Song S. Backbone-hydrazone-containing biodegradable copolymeric micelles for anticancer drug delivery. Journal of Nanoparticle Research 2016; 18(11): 316. https://doi.org/10.1007/s11051-016-3626-4 DOI: https://doi.org/10.1007/s11051-016-3626-4
Petrova S, Venturini CG, Jäger A, Jäger E, Černoch P, Kereïche S, Kováčik L, Raška I, Štěpánek P. Novel thermo-responsive double-hydrophilic and hydrophobic MPEO-b-PEtOx-b-PCL triblock terpolymers: Synthesis, characterization and self-assembly studies. Polymer 2015; 59: 215-25. https://doi.org/10.1016/j.polymer.2015.01.009 DOI: https://doi.org/10.1016/j.polymer.2015.01.009
Xiong D, Yao N, Gu H, Wang J, Zhang L. Stimuli-responsive shell cross-linked micelles from amphiphilic four-arm star copolymers as potential nanocarriers for “pH/redox-triggered” anticancer drug release. Polymer 2017; 114: 161-72. https://doi.org/10.1016/j.polymer.2017.03.002 DOI: https://doi.org/10.1016/j.polymer.2017.03.002
Wang Y, Yang J, Yang J. Synthesis and self‐assembly of novel amphiphilic copolymers poly (lactic acid)‐block‐poly (ascorbyl acrylate). Journal of Polymer Science Part A: Polymer Chemistry 2011; 49(18): 3988-96. https://doi.org/10.1002/pola.24840 DOI: https://doi.org/10.1002/pola.24840
Guo Y, Liu J, Zhang K, Zhang H, Li Y, Lei Z. Synthesis of stimuli-responsive support material for pectinase immobilization and investigation of its controllable tailoring of enzymatic activity. Biochemical Engineering Journal 2017; 121: 188-95. https://doi.org/10.1016/j.bej.2017.02.010 DOI: https://doi.org/10.1016/j.bej.2017.02.010
Kim JK, Basavaraja C, Umashankar M. Effect of honeycomb-patterned structure on electrical and magnetic behaviors of poly (ɛ-caprolactone)/capped magnetic nanoparticle composite films. Polymer 2016; 87: 138-47. https://doi.org/10.1016/j.polymer.2016.01.052 DOI: https://doi.org/10.1016/j.polymer.2016.01.052
Mao L, Liu YJ, Bai YK, Wu HQ, Liu XC. Poly (ɛ‐caprolactone) nanocomposites with layered double hydroxides modified by in situ grafting polymerization: Structure characterization and barrier properties. Journal of Applied Polymer Science 2017; 134(38): 45320. https://doi.org/10.1002/app.45320 DOI: https://doi.org/10.1002/app.45320
Park JY, Male U, Huh D. Reversible change of wettability in poly (ɛ-caprolactone/azobenzene) honeycomb-patterned films by UV and visible light illumination. Polymer Bulletin 2017; 74(10): 4235-49. https://doi.org/10.1007/s00289-017-1948-8 DOI: https://doi.org/10.1007/s00289-017-1948-8
Yuan F, Gu Z, Li L, Sha L. Novel cerium (IV)-diolate complex with a 13-nuclear cerium (IV)-oxo core: Synthesis, molecular structure and catalytic property for ε-caprolactone-polymerization. Polyhedron 2017; 133: 393-7. https://doi.org/10.1016/j.poly.2017.06.001 DOI: https://doi.org/10.1016/j.poly.2017.06.001
Njogu EM, Omondi B, Nyamori VO. Silver (I)-pyridinyl Schiff base complexes: Synthesis, structural characterization and reactivity in ring-opening polymerisation of ε-caprolactone. Inorganica Chimica Acta 2017; 457: 160-70. https://doi.org/10.1016/j.ica.2016.12.019 DOI: https://doi.org/10.1016/j.ica.2016.12.019
Roymuhury SK, Chakraborty D, Ramkumar V. Aluminium complexes bearing N, O-aminophenol ligands as efficient catalysts for the ring opening polymerization of lactide. European Polymer Journal 2015; 70: 203-14. https://doi.org/10.1016/j.eurpolymj.2015.07.025 DOI: https://doi.org/10.1016/j.eurpolymj.2015.07.025
Rosen T, Goldberg I, Venditto V, Kol M. Tailor-made stereoblock copolymers of poly (lactic acid) by a truly living polymerization catalyst. Journal of the American Chemical Society 2016; 138(37): 12041-4. https://doi.org/10.1021/jacs.6b07287 DOI: https://doi.org/10.1021/jacs.6b07287
Phillips DJ, Gibson MI. Biodegradable poly (disulfide) s derived from RAFT polymerization: monomer scope, glutathione degradation, and tunable thermal responses. Biomacromolecules 2012; 13(10): 3200-8. https://doi.org/10.1021/bm300989s DOI: https://doi.org/10.1021/bm300989s
Gatti S, Agostini A, Ferrari R, Moscatelli D. Synthesis and nanoprecipitation of HEMA-CLn based polymers for the production of biodegradable nanoparticles. Polymers 2017; 9(9): 389. https://doi.org/10.3390/polym9090389 DOI: https://doi.org/10.3390/polym9090389
Hu K, Ou EC, Xu Q, Peng C, Li L, Bao L, Xiong YQ, Xu WJ. Light-responsive and biodegradable block polymer synthesized by RAFT polymerization and its potential drug carrier properties. Chemistry Letters 2016; 45(9): 1108-10. https://doi.org/10.1246/cl.160339 DOI: https://doi.org/10.1246/cl.160339
Sponchioni M, Ferrari R, Morosi L, Moscatelli D. Influence of the polymer structure over self‐assembly and thermo‐responsive properties: The case of PEG‐b‐PCL grafted copolymers via a combination of RAFT and ROP. Journal of Polymer Science Part A: Polymer Chemistry 2016; 54(18): 2919-31. https://doi.org/10.1002/pola.28177 DOI: https://doi.org/10.1002/pola.28177
Cui L, Wang R, Ji X, Hu M, Wang B, Liu J. Template-assisted synthesis of biodegradable and pH-responsive polymer capsules via RAFT polymerization for controlled drug release. Materials Chemistry and Physics 2014; 148(1-2): 87-95. https://doi.org/10.1016/j.matchemphys.2014.07.016 DOI: https://doi.org/10.1016/j.matchemphys.2014.07.016
Guégain E, Michel JP, Boissenot T, Nicolas J. Tunable Degradation of Copolymers Prepared by Nitroxide-Mediated Radical Ring-Opening Polymerization and Point-by-Point Comparison with Traditional Polyesters. Macromolecules 2018; 51(3): 724-36. https://doi.org/10.1021/acs.macromol.7b02655 DOI: https://doi.org/10.1021/acs.macromol.7b02655
Kukut M, Karal-Yilmaz O, Yagci Y. Synthesis, characterisation and drug release properties of microspheres of polystyrene with aliphatic polyester side-chains. Journal of microencapsulation 2014; 31(3): 254-61. https://doi.org/10.3109/02652048.2013.834993 DOI: https://doi.org/10.3109/02652048.2013.834993
Gross RA, Kumar A, Kalra B. Polymer synthesis by in vitro enzyme catalysis. Chemical Reviews 2001; 101(7): 2097-124. https://doi.org/10.1021/cr0002590 DOI: https://doi.org/10.1021/cr0002590
Varma IK, Albertsson AC, Rajkhowa R, Srivastava RK. Enzyme catalyzed synthesis of polyesters. Progress in Polymer Science 2005; 30(10): 949-81. https://doi.org/10.1016/j.progpolymsci.2005.06.010 DOI: https://doi.org/10.1016/j.progpolymsci.2005.06.010
Chaudhary AK, Beckman EJ, Russell AJ. Biocatalytic polyester synthesis: Analysis of the evolution of molecular weight and end group functionality. Biotechnology and bioengineering 1997; 55(1): 227-39. https://doi.org/10.1002/(SICI)1097-0290(19970705)55:1<227::AID-BIT23>3.0.CO;2-H DOI: https://doi.org/10.1002/(SICI)1097-0290(19970705)55:1<227::AID-BIT23>3.0.CO;2-H
Uyama H, Namekawa S, Kobayash S. Mechanistic studies on the lipase-catalyzed ring-opening polymerization of lactones. Polymer journal 1997; 29(3): 299. https://doi.org/10.1295/polymj.29.299 DOI: https://doi.org/10.1295/polymj.29.299
Namekawa S, Suda S, Uyama H, Kobayashi S. Lipase-catalyzed ring-opening polymerization of lactones to polyesters and its mechanistic aspects. International journal of biological macromolecules 1999; 25(1-3): 145-51. https://doi.org/10.1016/S0141-8130(99)00028-8 DOI: https://doi.org/10.1016/S0141-8130(99)00028-8
Kobayashi S, Uyama H, Namekawa S. In vitro biosynthesis of polyesters with isolated enzymes in aqueous systems and organic solvents. Polymer degradation and stability 1998; 59(1-3): 195-201. https://doi.org/10.1016/S0141-3910(97)00178-X DOI: https://doi.org/10.1016/S0141-3910(97)00178-X
Tsujimoto T, Uyama H, Kobayashi S. Enzymatic synthesis and curing of biodegradable crosslinkable polyesters. Macromolecular Bioscience 2002; 2(7): 329-35. https://doi.org/10.1002/1616-5195(200209)2:7<329::AID-MABI329>3.0.CO;2-H DOI: https://doi.org/10.1002/1616-5195(200209)2:7<329::AID-MABI329>3.0.CO;2-H
Mahapatro A, Kumar A, Gross RA. Mild, Solvent-Free ω-Hydroxy Acid Polycondensations Catalyzed by Candida a ntarctica Lipase B. Biomacromolecules 2004; 5(1): 62-8. https://doi.org/10.1021/bm0342382 DOI: https://doi.org/10.1021/bm0342382
Iwata S, Toshima K, Matsumura S. Enzyme‐catalyzed pre-paration of aliphatic polyesters containing thioester linkages. Macromolecular rapid communications 2003; 24(7): 467-71. https://doi.org/10.1002/marc.200390070 DOI: https://doi.org/10.1002/marc.200390070
Panova AA, Taktak S, Randriamahefa S, Cammas-Marion S, Guerin P, Kaplan DL. Polymerization of Propyl Malolactonate in the Presence of Candida r ugosa Lipase. Biomacromolecules 2003; 4(1): 19-27. https://doi.org/10.1021/bm0255746 DOI: https://doi.org/10.1021/bm0255746
Uyama H, Takeya K, Hoshi N, Kobayashi S. Lipase-catalyzed ring-opening polymerization of 12-dodecanolide. Macromolecules 1995; 28(21): 7046-50. https://doi.org/10.1021/ma00125a002 DOI: https://doi.org/10.1021/ma00125a002
Kumar A, Gross RA, Wang Y, Hillmyer MA. Recognition by lipases of ω-hydroxyl macroinitiators for diblock copolymer synthesis. Macromolecules 2002; 35(20): 7606-11. https://doi.org/10.1021/ma020060k DOI: https://doi.org/10.1021/ma020060k
Dong H, Cao SG, Li ZQ, Han SP, You DL, Shen JC. Study on the enzymatic polymerization mechanism of lactone and the strategy for improving the degree of polymerization. Journal of Polymer Science Part A: Polymer Chemistry 1999; 37(9): 1265-75. https://doi.org/10.1002/(SICI)1099-0518(19990501)37:9<1265::AID-POLA6>3.0.CO;2-I DOI: https://doi.org/10.1002/(SICI)1099-0518(19990501)37:9<1265::AID-POLA6>3.0.CO;2-I
Deng F, Gross RA. Ring-opening bulk polymerization of ε-caprolactone and trimethylene carbonate catalyzed by lipase Novozym 435. International journal of biological macromolecules 1999; 25(1-3): 153-9. https://doi.org/10.1016/S0141-8130(99)00029-X DOI: https://doi.org/10.1016/S0141-8130(99)00029-X
Kumar A, Gross RA. Candida a ntartica Lipase B Catalyzed Polycaprolactone Synthesis: Effects of Organic Media and Temperature. Biomacromolecules 2000; 1(1): 133-8. https://doi.org/10.1021/bm990510p DOI: https://doi.org/10.1021/bm990510p
Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J. Cellulose nanomaterials review: structure, properties and nanocomposites. Chemical Society Reviews 2011; 40(7): 3941-94. https://doi.org/10.1039/c0cs00108b DOI: https://doi.org/10.1039/c0cs00108b
Ikada Y, Tsuji H. Biodegradable polyesters for medical and ecological applications. Macromolecular rapid communications 2000; 21(3): 117-32. https://doi.org/10.1002/(SICI)1521-3927(20000201)21:3<117::AID-MARC117>3.0.CO;2-X DOI: https://doi.org/10.1002/(SICI)1521-3927(20000201)21:3<117::AID-MARC117>3.0.CO;2-X
Inkinen S, Hakkarainen M, Albertsson AC, Södergård A. From lactic acid to poly (lactic acid)(PLA): characterization and analysis of PLA and its precursors. Biomacromolecules 2011; 12(3): 523-32. https://doi.org/10.1021/bm101302t DOI: https://doi.org/10.1021/bm101302t
Garlotta D. A literature review of poly (lactic acid). Journal of Polymers and the Environment 2001; 9(2): 63-84. https://doi.org/10.1023/A:1020200822435 DOI: https://doi.org/10.1023/A:1020200822435
Lim LT, Auras R, Rubino M. Processing technologies for poly (lactic acid). Progress in polymer science 2008; 33(8): 820-52. https://doi.org/10.1016/j.progpolymsci.2008.05.004 DOI: https://doi.org/10.1016/j.progpolymsci.2008.05.004
Woodruff MA, Hutmacher DW. The return of a forgotten polymer—polycaprolactone in the 21st century. Progress in polymer science 2010; 35(10): 1217-56. https://doi.org/10.1016/j.progpolymsci.2010.04.002 DOI: https://doi.org/10.1016/j.progpolymsci.2010.04.002
Fujimaki T. Processability and properties of aliphatic polyesters, ‘BIONOLLE’, synthesized by polycondensation reaction. Polymer degradation and stability 1998; 59(1-3): 209-14. https://doi.org/10.1016/S0141-3910(97)00220-6 DOI: https://doi.org/10.1016/S0141-3910(97)00220-6
Nofar M, Heuzey MC, Carreau PJ, Kamal MR. Effects of nanoclay and its localization on the morphology stabilization of PLA/PBAT blends under shear flow. Polymer 2016; 98: 353-64. https://doi.org/10.1016/j.polymer.2016.06.044 DOI: https://doi.org/10.1016/j.polymer.2016.06.044
Harun‐or‐Rashid MD, Rahaman S, Enamul Kabir S, Khan MA. Effect of hydrochloric acid on the properties of biodegradable packaging materials of carboxymethylcellulose/poly (vinyl alcohol) blends. Journal of Applied Polymer Science 2016; 133(2). DOI: https://doi.org/10.1002/app.42870
Fasihi H, Fazilati M, Hashemi M, Noshirvani N. Novel carboxymethyl cellulose-polyvinyl alcohol blend films stabilized by Pickering emulsion incorporation method. Carbohydrate polymers 2017; 167: 79-89. https://doi.org/10.1016/j.carbpol.2017.03.017 DOI: https://doi.org/10.1016/j.carbpol.2017.03.017
Chahal S, Hussain FS, Yusoff MB. Characterization of modified cellulose (MC)/poly (vinyl alcohol) electrospun nanofibers for bone tissue engineering. Procedia Engineering 2013; 53: 683-8. https://doi.org/10.1016/j.proeng.2013.02.088 DOI: https://doi.org/10.1016/j.proeng.2013.02.088
Hameed N, Xiong R, Salim NV, Guo Q. Fabrication and characterization of transparent and biodegradable cellulose/poly (vinyl alcohol) blend films using an ionic liquid. Cellulose 2013; 20(5): 2517-27. https://doi.org/10.1007/s10570-013-0017-1 DOI: https://doi.org/10.1007/s10570-013-0017-1
Qiu K, Netravali AN. Fabrication and characterization of biodegradable composites based on microfibrillated cellulose and polyvinyl alcohol. Composites Science and Technology 2012; 72(13): 1588-94. https://doi.org/10.1016/j.compscitech.2012.06.010 DOI: https://doi.org/10.1016/j.compscitech.2012.06.010
Guzman-Puyol S, Ceseracciu L, Heredia-Guerrero JA, Anyfantis GC, Cingolani R, Athanassiou A, Bayer IS. Effect of trifluoroacetic acid on the properties of polyvinyl alcohol and polyvinyl alcohol–cellulose composites. Chemical Engineering Journal 2015; 277: 242-51. https://doi.org/10.1016/j.cej.2015.04.092 DOI: https://doi.org/10.1016/j.cej.2015.04.092
Fortunati E, Benincasa P, Balestra GM, Luzi F, Mazzaglia A, Del Buono D, Puglia D, Torre L. Revalorization of barley straw and husk as precursors for cellulose nanocrystals extraction and their effect on PVA_CH nanocomposites. Industrial Crops and Products 2016; 92: 201-17. https://doi.org/10.1016/j.indcrop.2016.07.047 DOI: https://doi.org/10.1016/j.indcrop.2016.07.047
Quintana R, Persenaire O, Lemmouchi Y, Bonnaud L, Dubois P. Compatibilization of co-plasticized cellulose acetate/water soluble polymers blends by reactive extrusion. Polymer Degradation and Stability 2016; 126: 31-8. https://doi.org/10.1016/j.polymdegradstab.2015.12.023 DOI: https://doi.org/10.1016/j.polymdegradstab.2015.12.023
Cano AI, Cháfer M, Chiralt A, González-Martínez C. Biodegradation behavior of starch-PVA films as affected by the incorporation of different antimicrobials. Polymer Degradation and Stability 2016; 132: 11-20. https://doi.org/10.1016/j.polymdegradstab.2016.04.014 DOI: https://doi.org/10.1016/j.polymdegradstab.2016.04.014
Wang HF, Su W, Zhang C, Luo XH, Feng J. Biocatalytic fabrication of fast-degradable, water-soluble polycarbonate functionalized with tertiary amine groups in backbone. Biomacromolecules 2010; 11(10): 2550-7. https://doi.org/10.1021/bm1001476 DOI: https://doi.org/10.1021/bm1001476
Zhang X, Cai M, Zhong Z, Zhuo R. A water‐soluble polycarbonate with dimethylamino pendant groups prepared by enzyme‐catalyzed ring‐opening polymerization. Macromolecular rapid communications 2012; 33(8): 693-7. https://doi.org/10.1002/marc.201100765 DOI: https://doi.org/10.1002/marc.201100765
Zhou Q, Gu L, Gao Y, Qin Y, Wang X, Wang F. Biodegra-dable CO2‐based polycarbonates with rapid and reversible thermal response at body temperature. Journal of Polymer Science Part A: Polymer Chemistry 2013; 51(9): 1893-8. https://doi.org/10.1002/pola.26583 DOI: https://doi.org/10.1002/pola.26583
Lee JB, Lee YK, Choi GD, Na SW, Park TS, Kim WN. Compatibilizing effects for improving mechanical properties of biodegradable poly (lactic acid) and polycarbonate blends. Polymer degradation and stability 2011; 96(4): 553-60. https://doi.org/10.1016/j.polymdegradstab.2010.12.019 DOI: https://doi.org/10.1016/j.polymdegradstab.2010.12.019
Niu Y, Zhang W, Li H, Chen X, Sun J, Zhuang X, Jing X. Carbon dioxide/propylene oxide coupling reaction catalyzed by chromium salen complexes. Polymer 2009; 50(2): 441-6. https://doi.org/10.1016/j.polymer.2008.11.008 DOI: https://doi.org/10.1016/j.polymer.2008.11.008
Liu S, Zhao X, Guo H, Qin Y, Wang X, Wang F. Construction of Well‐Defined Redox‐Responsive CO2‐Based Polycarbonates: Combination of Immortal Copolymerization and Prereaction Approach. Macromolecular rapid communications 2017; 38(9): 1600754. https://doi.org/10.1002/marc.201600754 DOI: https://doi.org/10.1002/marc.201600754
Chang C, Qin Y, Luo X, Li Y. Synthesis and process optimization of soybean oil-based terminal epoxides for the production of new biodegradable polycarbonates via the intergration of CO2. Industrial crops and products 2017; 99: 34-40. https://doi.org/10.1016/j.indcrop.2017.01.032 DOI: https://doi.org/10.1016/j.indcrop.2017.01.032
Song P, Mao X, Zhang X, Zhu X, Wang R. A one-step strategy for cross-linkable aliphatic polycarbonates with high degradability derived from CO 2, propylene oxide and itaconic anhydride. RSC Advances 2014; 4(30): 15602-5. https://doi.org/10.1039/C4RA01514B DOI: https://doi.org/10.1039/C4RA01514B
Liu S, Wang J, Huang K, Liu Y, Wu W. Synthesis of poly (propylene-co-lactide carbonate) and hydrolysis of the terpolymer. Polymer bulletin 2011; 66(3): 327-40. https://doi.org/10.1007/s00289-010-0283-0 DOI: https://doi.org/10.1007/s00289-010-0283-0
Zhuang Y, Song W, Ning G, Sun X, Sun Z, Xu G, Zhang B, Chen Y, Tao S. 3D–printing of materials with anisotropic heat distribution using conductive polylactic acid composites. Materials & Design 2017; 126: 135-40. https://doi.org/10.1016/j.matdes.2017.04.047 DOI: https://doi.org/10.1016/j.matdes.2017.04.047
Tian X, Liu T, Yang C, Wang Q, Li D. Interface and performance of 3D printed continuous carbon fiber reinforced PLA composites. Composites Part A: Applied Science and Manufacturing 2016; 88: 198-205. https://doi.org/10.1016/j.compositesa.2016.05.032 DOI: https://doi.org/10.1016/j.compositesa.2016.05.032
Ronca D, Langella F, Chierchia M, D’Amora U, Russo T, Domingos M, Gloria A, Bartolo P, Ambrosio L. Bone tissue engineering: 3D PCL-based nanocomposite scaffolds with tailored properties. Procedia CIRP 2016; 49: 51-4. https://doi.org/10.1016/j.procir.2015.07.028 DOI: https://doi.org/10.1016/j.procir.2015.07.028
Pei E, Shen J, Watling J. Direct 3D printing of polymers onto textiles: experimental studies and applications. Rapid Prototyping Journal 2015; 21(5): 556-71. https://doi.org/10.1108/RPJ-09-2014-0126 DOI: https://doi.org/10.1108/RPJ-09-2014-0126
Zhang B, Seong B, Nguyen V, Byun D. 3D printing of high-resolution PLA-based structures by hybrid electrohydrodynamic and fused deposition modeling techniques. Journal of Micromechanics and Microengineering 2016; 26(2): 025015. https://doi.org/10.1088/0960-1317/26/2/025015 DOI: https://doi.org/10.1088/0960-1317/26/2/025015
Wang M, Favi P, Cheng X, Golshan NH, Ziemer KS, Keidar M, Webster TJ. Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration. Acta biomaterialia 2016; 46: 256-65. https://doi.org/10.1016/j.actbio.2016.09.030 DOI: https://doi.org/10.1016/j.actbio.2016.09.030
Bustillos J, Montero D, Nautiyal P, Loganathan A, Boesl B, Agarwal A. Integration of graphene in poly (lactic) acid by 3D printing to develop creep and wear‐resistant hierarchical nanocomposites. Polymer Composites 2017. https://doi.org/10.1002/pc.24422 DOI: https://doi.org/10.1002/pc.24422
Sanatgar RH, Campagne C, Nierstrasz V. Investigation of the adhesion properties of direct 3D printing of polymers and nanocomposites on textiles: Effect of FDM printing process parameters. Applied Surface Science 2017; 403: 551-63. https://doi.org/10.1016/j.apsusc.2017.01.112 DOI: https://doi.org/10.1016/j.apsusc.2017.01.112
Dong J, Li M, Zhou L, Lee S, Mei C, Xu X, Wu Q. The influence of grafted cellulose nanofibers and postextrusion annealing treatment on selected properties of poly (lactic acid) filaments for 3D printing. Journal of Polymer Science Part B: Polymer Physics 2017; 55(11): 847-55. https://doi.org/10.1002/polb.24333 DOI: https://doi.org/10.1002/polb.24333
Su CK, Chen JC. Reusable, 3D-printed, peroxidase mimic–incorporating multi-well plate for high-throughput glucose
determination. Sensors and Actuators B: Chemical 2017; 247: 641-7. https://doi.org/10.1016/j.snb.2017.03.054 DOI: https://doi.org/10.1016/j.snb.2017.03.054
Guo Y, Chang CC, Halada G, Cuiffo MA, Xue Y, Zuo X, Pack S, Zhang L, He S, Weil E, Rafailovich MH. Engineering flame retardant biodegradable polymer nanocomposites and their application in 3D printing. Polymer Degradation and Stability 2017; 137: 205-15. https://doi.org/10.1016/j.polymdegradstab.2017.01.019 DOI: https://doi.org/10.1016/j.polymdegradstab.2017.01.019
Mendoza-Buenrostro C, Lara H, Rodriguez C. Hybrid fabrication of a 3D printed geometry embedded with PCL nanofibers for tissue engineering applications. Procedia Engineering 2015; 110: 128-34. https://doi.org/10.1016/j.proeng.2015.07.020 DOI: https://doi.org/10.1016/j.proeng.2015.07.020
Muwaffak Z, Goyanes A, Clark V, Basit AW, Hilton ST, Gaisford S. Patient-specific 3D scanned and 3D printed antimicrobial polycaprolactone wound dressings. Inter-national journal of pharmaceutics 2017; 527(1-2): 161-70. https://doi.org/10.1016/j.ijpharm.2017.04.077 DOI: https://doi.org/10.1016/j.ijpharm.2017.04.077
Wu CS, Liao HT, Cai YX. Characterisation, biodegradability and application of palm fibre-reinforced polyhydroxyalkanoate composites. Polymer Degradation and Stability 2017; 140: 55-63. https://doi.org/10.1016/j.polymdegradstab.2017.04.016 DOI: https://doi.org/10.1016/j.polymdegradstab.2017.04.016
Kelnar I, Kratochvíl J, Kaprálková L, Zhigunov A, Nevoralová M. Graphite nanoplatelets-modified PLA/PCL: Effect of blend ratio and nanofiller localization on structure and properties. Journal of the mechanical behavior of biomedical materials 2017; 71: 271-8. https://doi.org/10.1016/j.jmbbm.2017.03.028 DOI: https://doi.org/10.1016/j.jmbbm.2017.03.028
Malinowski R. Mechanical properties of PLA/PCL blends crosslinked by electron beam and TAIC additive. Chemical Physics Letters 2016; 662: 91-6. https://doi.org/10.1016/j.cplett.2016.09.022 DOI: https://doi.org/10.1016/j.cplett.2016.09.022
Ostafinska A, Fortelný I, Hodan J, Krejčíková S, Nevoralová M, Kredatusová J, Kruliš Z, Kotek J, Šlouf M. Strong synergistic effects in PLA/PCL blends: Impact of PLA matrix viscosity. Journal of the mechanical behavior of biomedical materials 2017; 69: 229-41. https://doi.org/10.1016/j.jmbbm.2017.01.015 DOI: https://doi.org/10.1016/j.jmbbm.2017.01.015
Wachirahuttapong S, Thongpin C, Sombatsompop N. Effect of PCL and compatibility contents on the morphology, crystallization and mechanical properties of PLA/PCL blends. Energy Procedia 2016; 89: 198-206. https://doi.org/10.1016/j.egypro.2016.05.026 DOI: https://doi.org/10.1016/j.egypro.2016.05.026
Navarro-Baena I, Sessini V, Dominici F, Torre L, Kenny JM, Peponi L. Design of biodegradable blends based on PLA and PCL: From morphological, thermal and mechanical studies to shape memory behavior. Polymer Degradation and Stability 2016; 132: 97-108. https://doi.org/10.1016/j.polymdegradstab.2016.03.037 DOI: https://doi.org/10.1016/j.polymdegradstab.2016.03.037
Mofokeng JP, Luyt AS. Dynamic mechanical properties of PLA/PHBV, PLA/PCL, PHBV/PCL blends and their nanocomposites with TiO2 as nanofiller. Thermochimica Acta 2015; 613: 41-53. https://doi.org/10.1016/j.tca.2015.05.019 DOI: https://doi.org/10.1016/j.tca.2015.05.019
Li L, Huang W, Wang B, Wei W, Gu Q, Chen P. Properties and structure of polylactide/poly (3-hydroxybutyrate-co-3-hydroxyvalerate)(PLA/PHBV) blend fibers. Polymer 2015; 68: 183-94. https://doi.org/10.1016/j.polymer.2015.05.024 DOI: https://doi.org/10.1016/j.polymer.2015.05.024
Xu Z, Chai X. Effect of weight ratios of PHBV/PLA polymer blends on nitrate removal efficiency and microbial community during solid-phase denitrification. International Biodeterioration & Biodegradation 2017; 116: 175-83. https://doi.org/10.1016/j.ibiod.2016.10.033 DOI: https://doi.org/10.1016/j.ibiod.2016.10.033
Yang J, Zhu H, Zhang C, Jiang Q, Zhao Y, Chen P, Wang D. Transesterification induced mechanical properties enhan-cement of PLLA/PHBV bio-alloy. Polymer 2016; 83: 230-8. https://doi.org/10.1016/j.polymer.2015.12.025 DOI: https://doi.org/10.1016/j.polymer.2015.12.025
Zembouai I, Kaci M, Bruzaud S, Dumazert L, Bourmaud A, Mahlous M, Lopez-Cuesta JM, Grohens Y. Gamma irradiation effects on morphology and properties of PHBV/PLA blends in presence of compatibilizer and Cloisite 30B. Polymer Testing 2016; 49: 29-37. https://doi.org/10.1016/j.polymertesting.2015.11.003 DOI: https://doi.org/10.1016/j.polymertesting.2015.11.003
Arrieta MP, Fortunati E, Dominici F, López J, Kenny JM. Bionanocomposite films based on plasticized PLA–PHB/cellulose nanocrystal blends. Carbohydrate polymers 2015; 121: 265-75. https://doi.org/10.1016/j.carbpol.2014.12.056 DOI: https://doi.org/10.1016/j.carbpol.2014.12.056
Arrieta MP, López J, López D, Kenny JM, Peponi L. Biodegradable electrospun bionanocomposite fibers based on plasticized PLA–PHB blends reinforced with cellulose nanocrystals. Industrial Crops and Products 2016; 93: 290-301. https://doi.org/10.1016/j.indcrop.2015.12.058 DOI: https://doi.org/10.1016/j.indcrop.2015.12.058
Abdelwahab MA, Flynn A, Chiou BS, Imam S, Orts W, Chiellini E. Thermal, mechanical and morphological characterization of plasticized PLA–PHB blends. Polymer Degradation and Stability 2012; 97(9): 1822-8. https://doi.org/10.1016/j.polymdegradstab.2012.05.036 DOI: https://doi.org/10.1016/j.polymdegradstab.2012.05.036
Nicosia A, Gieparda W, Foksowicz-Flaczyk J, Walentowska J, Wesołek D, Vazquez B, Prodi F, Belosi F. Air filtration and antimicrobial capabilities of electrospun PLA/PHB containing ionic liquid. Separation and Purification Technology 2015; 154: 154-60. https://doi.org/10.1016/j.seppur.2015.09.037 DOI: https://doi.org/10.1016/j.seppur.2015.09.037
Armentano I, Fortunati E, Burgos N, Dominici F, Luzi F, Fiori S, Jiménez A, Yoon K, Ahn J, Kang S, Kenny JM. Processing and characterization of plasticized PLA/PHB blends for biodegradable multiphase systems. Express Polymer Letters 2015; 9(7). https://doi.org/10.3144/expresspolymlett.2015.55 DOI: https://doi.org/10.3144/expresspolymlett.2015.55
Wang LF, Rhim JW, Hong SI. Preparation of poly (lactide)/poly (butylene adipate-co-terephthalate) blend films using a solvent casting method and their food packaging application. LWT-Food Science and Technology 2016; 68: 454-61. https://doi.org/10.1016/j.lwt.2015.12.062 DOI: https://doi.org/10.1016/j.lwt.2015.12.062
Lu X, Zhao J, Yang X, Xiao P. Morphology and properties of biodegradable poly (lactic acid)/poly (butylene adipate-co-terephthalate) blends with different viscosity ratio. Polymer Testing 2017; 60: 58-67. https://doi.org/10.1016/j.polymertesting.2017.03.008 DOI: https://doi.org/10.1016/j.polymertesting.2017.03.008
Arruda LC, Magaton M, Bretas RE, Ueki MM. Influence of chain extender on mechanical, thermal and morphological properties of blown films of PLA/PBAT blends. Polymer Testing 2015; 43: 27-37. https://doi.org/10.1016/j.polymertesting.2015.02.005 DOI: https://doi.org/10.1016/j.polymertesting.2015.02.005
Al-Itry R, Lamnawar K, Maazouz A. Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy. Polymer Degradation and Stability 2012; 97(10): 1898-914. https://doi.org/10.1016/j.polymdegradstab.2012.06.028 DOI: https://doi.org/10.1016/j.polymdegradstab.2012.06.028
Müller P, Bere J, Fekete E, Móczó J, Nagy B, Kállay M, Gya-rmati B, Pukánszky B. Interactions, structure and properties in PLA/plasticized starch blends. Polymer 2016; 103: 9-18. https://doi.org/10.1016/j.polymer.2016.09.031 DOI: https://doi.org/10.1016/j.polymer.2016.09.031
Shirai MA, Grossmann MV, Mali S, Yamashita F, Garcia PS, Müller CM. Development of biodegradable flexible films of starch and poly (lactic acid) plasticized with adipate or citrate esters. Carbohydrate polymers 2013; 92(1): 19-22. https://doi.org/10.1016/j.carbpol.2012.09.038 DOI: https://doi.org/10.1016/j.carbpol.2012.09.038
Quintana R, Persenaire O, Lemmouchi Y, Bonnaud L, Dubois P. Grafted d/l-lactide to cellulose acetate by reactive melt processing: Its role as CA/PLA blend compatibilizer. European Polymer Journal 2014; 57: 30-6. https://doi.org/10.1016/j.eurpolymj.2014.05.003 DOI: https://doi.org/10.1016/j.eurpolymj.2014.05.003
Wang S, Li Y, Xiang H, Zhou Z, Chang T, Zhu M. Low cost carbon fibers from bio-renewable lignin/poly (lactic acid)(PLA) blends. Composites Science and Technology 2015; 119: 20-5. https://doi.org/10.1016/j.compscitech.2015.09.021 DOI: https://doi.org/10.1016/j.compscitech.2015.09.021
Shen Z, Zhou Y, Liu J, Xiao Y, Cao R, Wu F. Enhanced removal of nitrate using starch/PCL blends as solid carbon source in a constructed wetland. Bioresource technology 2015; 175: 239-44. https://doi.org/10.1016/j.biortech.2014.10.006 DOI: https://doi.org/10.1016/j.biortech.2014.10.006
Figueiredo AR, Silvestre AJ, Neto CP, Freire CS. In situ synthesis of bacterial cellulose/polycaprolactone blends for hot pressing nanocomposite films production. Carbohydrate polymers 2015; 132: 400-8. https://doi.org/10.1016/j.carbpol.2015.06.001 DOI: https://doi.org/10.1016/j.carbpol.2015.06.001
Goonoo N, Bhaw-Luximon A, Passanha P, Esteves S, Schönherr H, Jhurry D. Biomineralization potential and cellular response of PHB and PHBV blends with natural anionic polysaccharides. Materials Science and Engineering: C 2017; 76: 13-24. https://doi.org/10.1016/j.msec.2017.02.156 DOI: https://doi.org/10.1016/j.msec.2017.02.156
Torres-Huerta AM, Palma-Ramírez D, Dominguez-Crespo MA, Del Angel-López D, De La Fuente D. Comparative assessment of miscibility and degradability on PET/PLA and PET/chitosan blends. European Polymer Journal 2014; 61: 285-99. https://doi.org/10.1016/j.eurpolymj.2014.10.016 DOI: https://doi.org/10.1016/j.eurpolymj.2014.10.016
Madkour TM, Fadl S, Dardir MM, Mekewi MA. High performance nature of biodegradable polymeric nanocomposites for oil-well drilling fluids. Egyptian Journal of Petroleum 2016; 25(2): 281-91. https://doi.org/10.1016/j.ejpe.2015.09.004 DOI: https://doi.org/10.1016/j.ejpe.2015.09.004
Amirian M, Chakoli AN, Cai W, Sui J. Effect of functionalized multiwalled carbon nanotubes on thermal stability of poly (L-LACTIDE) biodegradable polymer. Scientia Iranica 2013; 20(3): 1023-7.
Sankar R, Shivashangari KS, Ravikumar V. Integrated poly-D, L-lactide-co-glycolide/silver nanocomposite: synthesis, characterization and wound healing potential in Wistar Albino rats. RSC Advances 2016; 6(27): 22728-36. https://doi.org/10.1039/C5RA23212K DOI: https://doi.org/10.1039/C5RA23212K
Herrera N, Roch H, Salaberria AM, Pino-Orellana MA, Labidi J, Fernandes SC, Radic D, Leiva A, Oksman K. Functionalized blown films of plasticized polylactic acid/chitin nanocomposite: Preparation and characterization. Materials & Design 2016; 92: 846-52. https://doi.org/10.1016/j.matdes.2015.12.083 DOI: https://doi.org/10.1016/j.matdes.2015.12.083
Samberg ME, Mente P, He T, King MW, Monteiro-Riviere NA. In vitro biocompatibility and antibacterial efficacy of a degradable poly (L-lactide-co-epsilon-caprolactone) copolymer incorporated with silver nanoparticles. Annals of biomedical engineering 2014; 42(7): 1482-93. https://doi.org/10.1007/s10439-013-0929-9 DOI: https://doi.org/10.1007/s10439-013-0929-9
Moeini S, Mohammadi MR, Simchi A. In-situ solvothermal processing of polycaprolactone/hydroxyapatite nanocomposites with enhanced mechanical and biological performance for bone tissue engineering. Bioactive materials 2017; 2(3): 146-55. https://doi.org/10.1016/j.bioactmat.2017.04.004 DOI: https://doi.org/10.1016/j.bioactmat.2017.04.004
Guarás MP, Alvarez VA, Ludueña LN. Biodegradable nanocomposites based on starch/polycaprolactone/ compatibilizer ternary blends reinforced with natural and organo‐modified montmorillonite. Journal of Applied Polymer Science 2016; 133(44). https://doi.org/10.1002/app.44163 DOI: https://doi.org/10.1002/app.44163
da Costa Reis DC, de Oliveira TA, de Carvalho LH, Soares Alves T, Barbosa R. Biodegradability of and interaction in the packaging of poly (3‐hydroxybutyrate‐co‐3‐hydroxyvalerate)–vermiculite bionanocomposites. Journal of Applied Polymer Science 2017; 134(15). https://doi.org/10.1002/app.44700 DOI: https://doi.org/10.1002/app.44700
Gumel AM, Annuar MS, Ishak KA, Ahmad N. Carbon nanofibers-poly-3-hydroxyalkanoates nanocomposite: ultrasound-assisted dispersion and thermostructural properties. Journal of Nanomaterials 2014; 2014: 123. https://doi.org/10.1155/2014/264206 DOI: https://doi.org/10.1155/2014/264206
Ahmadizadegan H. Surface modification of TiO2 nanoparticles with biodegradable nanocellolose and synthesis of novel polyimide/cellulose/TiO2 membrane. Journal of colloid and interface science 2017; 491: 390-400. https://doi.org/10.1016/j.jcis.2016.11.043 DOI: https://doi.org/10.1016/j.jcis.2016.11.043
Winzenburg G, Schmidt C, Fuchs S, Kissel T. Biodegradable polymers and their potential use in parenteral veterinary drug delivery systems. Advanced drug delivery reviews 2004; 56(10): 1453-66. https://doi.org/10.1016/j.addr.2004.02.008 DOI: https://doi.org/10.1016/j.addr.2004.02.008
von Burkersroda F, Schedl L, Göpferich A. Why degradable polymers undergo surface erosion or bulk erosion. Biomaterials 2002; 23(21): 4221-31. https://doi.org/10.1016/S0142-9612(02)00170-9 DOI: https://doi.org/10.1016/S0142-9612(02)00170-9
Tokiwa Y, Calabia BP. Biodegradability and biodegradation of polyesters. Journal of Polymers and the Environment 2007; 15(4): 259-67. https://doi.org/10.1007/s10924-007-0066-3 DOI: https://doi.org/10.1007/s10924-007-0066-3
Henton DE, Gruber P, Lunt J, Randall J. Polylactic acid technology. Natural fibers, biopolymers, and biocomposites 2005; 16: 527-77. https://doi.org/10.1201/9780203508206.ch16 DOI: https://doi.org/10.1201/9780203508206.ch16
Siepmann J, Göpferich A. Mathematical modeling of bioerodible, polymeric drug delivery systems. Advanced drug delivery reviews 2001; 48(2-3): 229-47. https://doi.org/10.1016/S0169-409X(01)00116-8 DOI: https://doi.org/10.1016/S0169-409X(01)00116-8
Elsawy MA, Kim KH, Park JW, Deep A. Hydrolytic degradation of polylactic acid (PLA) and its composites. Renewable and Sustainable Energy Reviews 2017; 79: 1346-52. https://doi.org/10.1016/j.rser.2017.05.143 DOI: https://doi.org/10.1016/j.rser.2017.05.143
Shah AA, Hasan F, Hameed A, Ahmed S. Biological degradation of plastics: a comprehensive review. Biotechnology advances 2008; 26(3): 246-65. https://doi.org/10.1016/j.biotechadv.2007.12.005 DOI: https://doi.org/10.1016/j.biotechadv.2007.12.005
Lucas N, Bienaime C, Belloy C, Queneudec M, Silvestre F, Nava-Saucedo JE. Polymer biodegradation: Mechanisms and estimation techniques–A review. Chemosphere 2008; 73(4): 429-42. https://doi.org/10.1016/j.chemosphere.2008.06.064 DOI: https://doi.org/10.1016/j.chemosphere.2008.06.064
Göpferich A. Mechanisms of polymer degradation and erosion. Biomaterials 1996; 17(2): 103-14. https://doi.org/10.1016/0142-9612(96)85755-3 DOI: https://doi.org/10.1016/0142-9612(96)85755-3
Rizzarelli P, Puglisi C, Montaudo G. Soil burial and enzymatic degradation in solution of aliphatic co-polyesters. Polymer degradation and stability 2004; 85(2): 855-63. https://doi.org/10.1016/j.polymdegradstab.2004.03.022 DOI: https://doi.org/10.1016/j.polymdegradstab.2004.03.022
Kijchavengkul T, Auras R, Rubino M, Alvarado E, Montero JR, Rosales JM. Atmospheric and soil degradation of aliphatic–aromatic polyester films. Polymer Degradation and Stability 2010; 95(2): 99-107. https://doi.org/10.1016/j.polymdegradstab.2009.11.048 DOI: https://doi.org/10.1016/j.polymdegradstab.2009.11.048
Augusta J, Müller RJ, Widdecke H. A rapid evaluation plate-test for the biodegradability of plastics. Applied microbiology and biotechnology 1993; 39(4-5): 673-8. https://doi.org/10.1007/BF00205073 DOI: https://doi.org/10.1007/BF00205073
Luzi F, Fortunati E, Puglia D, Petrucci R, Kenny JM, Torre L. Study of disintegrability in compost and enzymatic degradation of PLA and PLA nanocomposites reinforced with cellulose nanocrystals extracted from Posidonia Oceanica. Polymer Degradation and Stability 2015; 121: 105-15. https://doi.org/10.1016/j.polymdegradstab.2015.08.016 DOI: https://doi.org/10.1016/j.polymdegradstab.2015.08.016
Pelegrini K, Donazzolo I, Brambilla V, Coulon Grisa AM, Piazza D, Zattera AJ, Brandalise RN. Degradation of PLA and PLA in composites with triacetin and buriti fiber after 600 days in a simulated marine environment. Journal of Applied Polymer Science 2016; 133(15). https://doi.org/10.1002/app.43290 DOI: https://doi.org/10.1002/app.43290
Zhao C, Wu H, Ni J, Zhang S, Zhang X. Development of PLA/Mg composite for orthopedic implant: Tunable degradation and enhanced mineralization. Composites Science and Technology 2017; 147: 8-15. https://doi.org/10.1016/j.compscitech.2017.04.037 DOI: https://doi.org/10.1016/j.compscitech.2017.04.037
Breche Q, Chagnon G, Machado G, Girard E, Nottelet B, Garric X, Favier D. Mechanical behaviour׳ s evolution of a PLA-b-PEG-b-PLA triblock copolymer during hydrolytic degradation. Journal of the mechanical behavior of biomedical materials 2016; 60: 288-300. https://doi.org/10.1016/j.jmbbm.2016.02.015 DOI: https://doi.org/10.1016/j.jmbbm.2016.02.015
Huang Y, Zhang C, Pan Y, Zhou Y, Jiang L, Dan Y. Effect of NR on the hydrolytic degradation of PLA. Polymer degradation and stability 2013; 98(5): 943-50. https://doi.org/10.1016/j.polymdegradstab.2013.02.018 DOI: https://doi.org/10.1016/j.polymdegradstab.2013.02.018
Rocca-Smith JR, Chau N, Champion D, Brachais CH, Marcuzzo E, Sensidoni A, Piasente F, Karbowiak T, Debe-aufort F. Effect of the state of water and relative humidity on ageing of PLA films. Food Chemistry 2017; 236: 109-19. https://doi.org/10.1016/j.foodchem.2017.02.113 DOI: https://doi.org/10.1016/j.foodchem.2017.02.113
Iniguez-Franco F, Auras R, Burgess G, Holmes D, Fang X, Rubino M, Soto-Valdez H. Concurrent solvent induced crystallization and hydrolytic degradation of PLA by water-ethanol solutions. Polymer 2016; 99: 315-23. https://doi.org/10.1016/j.polymer.2016.07.018 DOI: https://doi.org/10.1016/j.polymer.2016.07.018
Karamanlioglu M, Robson GD. The influence of biotic and abiotic factors on the rate of degradation of poly (lactic) acid (PLA) coupons buried in compost and soil. Polymer degradation and stability 2013; 98(10): 2063-71. https://doi.org/10.1016/j.polymdegradstab.2013.07.004 DOI: https://doi.org/10.1016/j.polymdegradstab.2013.07.004
Karamanlioglu M, Houlden A, Robson GD. Isolation and characterisation of fungal communities associated with degradation and growth on the surface of poly (lactic) acid (PLA) in soil and compost. International Biodeterioration & Biodegradation 2014; 95: 301-10. https://doi.org/10.1016/j.ibiod.2014.09.006 DOI: https://doi.org/10.1016/j.ibiod.2014.09.006
Meischel M, Eichler J, Martinelli E, Karr U, Weigel J, Schmöller G, Tschegg EK, Fischerauer S, Weinberg AM, Stanzl-Tschegg SE. Adhesive strength of bone-implant interfaces and in-vivo degradation of PHB composites for load-bearing applications. Journal of the mechanical behavior of biomedical materials 2016; 53: 104-18. https://doi.org/10.1016/j.jmbbm.2015.08.004 DOI: https://doi.org/10.1016/j.jmbbm.2015.08.004
Cima LG, Vacanti JP, Vacanti C, Ingber D, Mooney D, Langer R. Tissue engineering by cell transplantation using degradable polymer substrates. Journal of biomechanical engineering 1991; 113(2): 143-51. https://doi.org/10.1115/1.2891228 DOI: https://doi.org/10.1115/1.2891228
Greisler HP. Growth factor release from vascular grafts. Journal of controlled release 1996; 39(2-3): 267-80. https://doi.org/10.1016/0168-3659(95)00159-X DOI: https://doi.org/10.1016/0168-3659(95)00159-X
Greisler HP, Gosselin C, Ren D, Kang SS, Kim DU. Biointeractive polymers and tissue engineered blood vessels. Biomaterials 1996; 17(3): 329-36. https://doi.org/10.1016/0142-9612(96)85571-2 DOI: https://doi.org/10.1016/0142-9612(96)85571-2
Brekke JH, Toth JM. Principles of tissue engineering applied to programmable osteogenesis. Journal of biomedical materials research 1998; 43(4): 380-98. https://doi.org/10.1002/(SICI)1097-4636(199824)43:4<380::AID-JBM6>3.0.CO;2-D DOI: https://doi.org/10.1002/(SICI)1097-4636(199824)43:4<380::AID-JBM6>3.0.CO;2-D
Evans GR, Brandt K, Widmer MS, Lu L, Meszlenyi RK, Gupta PK, Mikos AG, Hodges J, Williams J, Gürlek A, Nabawi A. In vivo evaluation of poly (L-lactic acid) porous conduits for peripheral nerve regeneration. Biomaterials 1999; 20(12): 1109-15. https://doi.org/10.1016/S0142-9612(99)00010-1 DOI: https://doi.org/10.1016/S0142-9612(99)00010-1
Rodrı́guez FJ, Gómez N, Perego G, Navarro X. Highly permeable polylactide-caprolactone nerve guides enhance peripheral nerve regeneration through long gaps. Biomaterials 1999; 20(16): 1489-500. https://doi.org/10.1016/S0142-9612(99)00055-1 DOI: https://doi.org/10.1016/S0142-9612(99)00055-1
Jagur‐Grodzinski J. Polymers for tissue engineering, medical devices, and regenerative medicine. Concise general review of recent studies. Polymers for advanced technologies 2006; 17(6): 395-418. https://doi.org/10.1002/pat.729 DOI: https://doi.org/10.1002/pat.729
Bos RR, Rozema FB, Boering G, Nijenhius AJ, Pennings AJ, Verwey AB, Nieuwenhuis P, Jansen HW. Degradation of and tissue reaction to biodegradable poly (L-lactide) for use as internal fixation of fractures: a study in rats. Biomaterials 1991; 12(1): 32-6. https://doi.org/10.1016/0142-9612(91)90128-W DOI: https://doi.org/10.1016/0142-9612(91)90128-W
Ishaug-Riley SL, Crane-Kruger GM, Yaszemski MJ, Mikos AG. Three-dimensional culture of rat calvarial osteoblasts in porous biodegradable polymers. Biomaterials 1998; 19(15): 1405-12. https://doi.org/10.1016/S0142-9612(98)00021-0 DOI: https://doi.org/10.1016/S0142-9612(98)00021-0
Amass W, Amass A, Tighe B. A review of biodegradable polymers: uses, current developments in the synthesis and characterization of biodegradable polyesters, blends of biodegradable polymers and recent advances in biodegradation studies. Polymer international 1998; 47(2): 89-144. https://doi.org/10.1002/(SICI)1097-0126(1998100)47:2<89::AID-PI86>3.0.CO;2-F DOI: https://doi.org/10.1002/(SICI)1097-0126(1998100)47:2<89::AID-PI86>3.0.CO;2-F
Edlund U, Albertsson AC. Novel drug delivery microspheres from poly (1, 5‐dioxepan‐2‐one‐co‐L‐lactide). Journal of Polymer Science Part A: Polymer Chemistry 1999; 37(12): 1877-84. https://doi.org/10.1002/(SICI)1099-0518(19990615)37:12<1877::AID-POLA17>3.0.CO;2-4 DOI: https://doi.org/10.1002/(SICI)1099-0518(19990615)37:12<1877::AID-POLA17>3.0.CO;2-4
Rizzarelli P, Carroccio S. Modern mass spectrometry in the characterization and degradation of biodegradable polymers. Analytica chimica acta 2014; 808: 18-43. https://doi.org/10.1016/j.aca.2013.11.001 DOI: https://doi.org/10.1016/j.aca.2013.11.001
Newman D, Bello A, Laredo E. Moisture effects on dielectric relaxations of poly (ɛ-caprolactone)/starch biodegradable blends: Local, interfacial and segmental. Carbohydrate polymers 2015; 131: 15-22. https://doi.org/10.1016/j.carbpol.2015.05.056 DOI: https://doi.org/10.1016/j.carbpol.2015.05.056
Flemming RG, Murphy CJ, Abrams GA, Goodman SL, Nealey PF. Effects of synthetic micro-and nano-structured surfaces on cell behavior. Biomaterials 1999; 20(6): 573-88. https://doi.org/10.1016/S0142-9612(98)00209-9 DOI: https://doi.org/10.1016/S0142-9612(98)00209-9
Ishaug SL, Crane GM, Miller MJ, Yasko AW, Yaszemski MJ, Mikos AG. Bone formation by three‐dimensional stromal osteoblast culture in biodegradable polymer scaffolds. Journal of biomedical materials research 1997; 36(1): 17-28. https://doi.org/10.1002/(SICI)1097-4636(199707)36:1<17::AID-JBM3>3.0.CO;2-O DOI: https://doi.org/10.1002/(SICI)1097-4636(199707)36:1<17::AID-JBM3>3.0.CO;2-O
Agrawal CM, Best J, Heckman JD, Boyan BD. Protein release kinetics of a biodegradable implant for fracture non-unions. Biomaterials 1995; 16(16): 1255-60. https://doi.org/10.1016/0142-9612(95)98133-Y DOI: https://doi.org/10.1016/0142-9612(95)98133-Y
Vunjak‐Novakovic G, Martin I, Obradovic B, Treppo S, Grodzinsky AJ, Langer R, Freed LE. Bioreactor cultivation conditions modulate the composition and mechanical properties of tissue‐engineered cartilage. Journal of Orthopaedic Research 1999; 17(1): 130-8. https://doi.org/10.1002/jor.1100170119 DOI: https://doi.org/10.1002/jor.1100170119
Xu F, Weng B, Gilkerson R, Materon LA, Lozano K. Development of tannic acid/chitosan/pullulan composite nanofibers from aqueous solution for potential applications as wound dressing. Carbohydrate polymers 2015; 115: 16-24. https://doi.org/10.1016/j.carbpol.2014.08.081 DOI: https://doi.org/10.1016/j.carbpol.2014.08.081
Ferreira A, Ferreira F, Paiva MC. Textile sensor applications with composite monofilaments of polymer/carbon nanotubes. InAdvances in Science and Technology 2013 (Vol. 80, pp. 65-70). Trans Tech Publications. DOI: https://doi.org/10.4028/www.scientific.net/AST.80.65
Kim IA, Rhee SH. Preparation of a non‐woven poly (ε‐caprolactone) fabric with partially embedded apatite surface for bone tissue engineering applications by partial surface melting of poly (ε‐caprolactone) fibers. Journal of Biomedical Materials Research Part A 2017; 105(7): 1973-83. https://doi.org/10.1002/jbm.a.36069 DOI: https://doi.org/10.1002/jbm.a.36069
Torres A, Ilabaca E, Rojas A, Rodríguez F, Galotto MJ, Guarda A, Villegas C, Romero J. Effect of processing conditions on the physical, chemical and transport properties of polylactic acid films containing thymol incorporated by supercritical impregnation. European Polymer Journal 2017; 89: 195-210. https://doi.org/10.1016/j.eurpolymj.2017.01.019 DOI: https://doi.org/10.1016/j.eurpolymj.2017.01.019
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Sunil Dhamaniya, Virendrakumar Gupta, Rucha Kakatkar
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Policy for Journals/Articles with Open Access
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are permitted and encouraged to post links to their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work
Policy for Journals / Manuscript with Paid Access
Authors who publish with this journal agree to the following terms:
- Publisher retain copyright .
- Authors are permitted and encouraged to post links to their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work .