Investigation of the Hydrolytic Stability of Polyurethane Applied to Vehicle Suspension Components
DOI:
https://doi.org/10.6000/1929-5995.2019.08.08Keywords:
Polyurethane, prepolymer, MOCA, hydrolysis, bushing, suspensionAbstract
Process parameters such as temperature and humidity, as well as formulation are the key factors in the manufacture of a polymeric component through a polyurethane prepolymer. These define the reaction kinetics, bonding and the resulting chemical interactions which determine the final characteristics of the material. One of the expected skills of polyurethane, when applied to components used in contact with water, is hydrolysis resistance. Consequently this research focused on exposure of a polymerized TDI (toluene diisocyanate) polyether polyurethane to different proportions of the curing agent, MOCA (4,4'-methylene-bis), in an environment susceptible to reactions with water at 70 °C. In this case, this material is applied in the manufacture of coil spring solid axle with trailing arms and Panhard rod suspension bushings. Mechanical tests and DSC (differential scanning calorimetry), TGA (thermogravimetry) and FT-IR (Fourier transform infrared) evaluations of the samples and prepolymer are conducted for the characterization of the different formulations, showing the negative relationship of the curing agent proportion parameters with the hydrolysis resistance. Here depolymerization of urethane and ether groups, as well as lower retention of yield stress are verified. These findings can subsidize developing predictive models for performance and lifetime of polyurethanes.
References
Le Gac PY, Choqueuse D, Melot D. Description and modeling of polyurethane hydrolysis used as thermal insulation in oil offshore conditions. Polymer Testing 2013; 32(8): 1588-93. https://doi.org/10.1016/j.polymertesting.2013.10.009 DOI: https://doi.org/10.1016/j.polymertesting.2013.10.009
Oertel G, Abele L. Polyurethane handbook: chemistry, raw materials, processing, application, properties 1994.
Szycher M. Handbook of polyurethanes, 2nd ed. Taylor & Francis Group, LLC 2012. https://doi.org/10.1201/b12343 DOI: https://doi.org/10.1201/b12343
Somarathna HM, Raman SN, Mohotti D, Mutalib AA, Badri KH. The use of polyurethane for structural and infrastructural engineering applications: A state-of-the-art review. Construction and Building Materials 2018; 190: 995-1014. https://doi.org/10.1016/j.conbuildmat.2018.09.166 DOI: https://doi.org/10.1016/j.conbuildmat.2018.09.166
Murray KA, Kennedy JE, McEvoy B, Vrain O, Ryan D, Cowman R, Higginbotham CL. The influence of electron beam irradiation conducted in air on the thermal, chemical, structural and surface properties of medical grade polyurethane. European Polymer Journal 2013; 49(7): 1782-95. https://doi.org/10.1016/j.eurpolymj.2013.03.034 DOI: https://doi.org/10.1016/j.eurpolymj.2013.03.034
Marzec M, Kucińska-Lipka J, Kalaszczyńska I, Janik H. Development of polyurethanes for bone repair. Materials Science and Engineering: C 2017; 80: 736-47. https://doi.org/10.1016/j.msec.2017.07.047 DOI: https://doi.org/10.1016/j.msec.2017.07.047
Pomes B, Derue I, Lucas A, Nguyen JF, Richaud E. Water ageing of urethane dimethacrylate networks. Polymer degradation and stability 2018; 154: 195-202. https://doi.org/10.1016/j.polymdegradstab.2018.06.003 DOI: https://doi.org/10.1016/j.polymdegradstab.2018.06.003
Stokes K, Cobian K. Polyether polyurethanes for implantable pacemaker leads. Biomaterials 1982; 3(4): 225-31. https://doi.org/10.1016/0142-9612(82)90024-2 DOI: https://doi.org/10.1016/0142-9612(82)90024-2
Romero-Azogil L, Benito E, de Ilarduya AM, García-Martín MG, Galbis JA. Hydrolytic degradation of d-mannitol-based polyurethanes. Polymer degradation and stability 2018; 153: 262-71. https://doi.org/10.1016/j.polymdegradstab.2018.05.009 DOI: https://doi.org/10.1016/j.polymdegradstab.2018.05.009
Petrovic ZS, Ferguson J. Polyurethane Elastomers. Prog Polym Sci 1991; 16: 695-836. https://doi.org/10.1016/0079-6700(91)90011-9 DOI: https://doi.org/10.1016/0079-6700(91)90011-9
Santana RMC, Forte MMC. Pré-polímeros de pu de alta funcionalidade a partir de poliéter diol. IPEN 2009.
Zimmer B, Nies C, Schmitt C, Possart W. Chemistry, polymer dynamics and mechanical properties of a two-part polyurethane elastomer during and after crosslinking. Part I: dry conditions. Polymer 2017; 115: 77-95. https://doi.org/10.1016/j.polymer.2017.03.020 DOI: https://doi.org/10.1016/j.polymer.2017.03.020
Zimmer B, Nies C, Schmitt C, Paulo C, Possart W. Chemistry, polymer dynamics and mechanical properties of a two-part polyurethane elastomer during and after crosslinking. Part II: moist conditions. Polymer 2018; 149: 238-52. https://doi.org/10.1016/j.polymer.2018.06.070 DOI: https://doi.org/10.1016/j.polymer.2018.06.070
Tian Q, Almásy L, Yan G, Sun G, Zhou X, Liu J, Krakovsky I, Veres M, Rosta L, Chen B. Small-angle neutron scattering investigation of polyurethane aged in dry and wet air. Express Polymer Letters 2014; 8(5). https://doi.org/10.3144/expresspolymlett.2014.38 DOI: https://doi.org/10.3144/expresspolymlett.2014.38
Krol P. Synthesis methods, chemical structures and phase structures of linear polyurethanes. Properties and applications of linear polyurethanes in polyurethane elastomers, copolymers and ionomers. Progress in materials science 2007; 52(6): 915-1015. https://doi.org/10.1016/j.pmatsci.2006.11.001 DOI: https://doi.org/10.1016/j.pmatsci.2006.11.001
Caraculacu AA, Coseri S. Isocyanates in polyaddition processes. Structure and reaction mechanisms. Progress in Polymer Science 2001; 26(5): 799-851. https://doi.org/10.1016/S0079-6700(00)00033-2 DOI: https://doi.org/10.1016/S0079-6700(00)00033-2
Davies P, Evrard G. Accelerated ageing of polyurethanes for marine applications. Polymer Degradation and Stability 2007; 92(8): 1455-64. https://doi.org/10.1016/j.polymdegradstab.2007.05.016 DOI: https://doi.org/10.1016/j.polymdegradstab.2007.05.016
Barendregt RB, Van Den Berg PJ. The degradation of polyurethane. Thermochim Acta 1980; 38(2): 181-195. https://doi.org/10.1016/0040-6031(80)87059-6 DOI: https://doi.org/10.1016/0040-6031(80)87059-6
Cauich-Rodríguez JV, Chan-Chan LH, Hernandez-Sánchez F, Cervantes-Uc JM. Degradation of polyurethanes for cardiovascular applications. Advances in biomaterials science and biomedical applications 2013: 51-82.
Hong B, Xian G. Ageing of a thermosetting polyurethane and its pultruded carbon fiber plates subjected to seawater immersion. Construction and Building Materials 2018; 165: 514-22. https://doi.org/10.1016/j.conbuildmat.2018.01.042 DOI: https://doi.org/10.1016/j.conbuildmat.2018.01.042
Kumagai S, Motokucho S, Yabuki R, Anzai A, Kameda T, Watanabe A, Nakatani H, Yoshioka T. Effects of hard-and soft-segment composition on pyrolysis characteristics of MDI, BD, and PTMG-based polyurethane elastomers. Journal of analytical and applied pyrolysis 2017; 126: 337-45. https://doi.org/10.1016/j.jaap.2017.05.012 DOI: https://doi.org/10.1016/j.jaap.2017.05.012
Xie F, Zhang T, Bryant P, Kurusingal V, Colwell JM, Laycock B. Degradation and stabilization of polyurethane elastomers. Prog Polym Sci 2018; 90: 211-268. https://doi.org/10.1016/j.progpolymsci.2018.12.003 DOI: https://doi.org/10.1016/j.progpolymsci.2018.12.003
Prisacariu C. Polyurethane Elastomers. Springer-Verlag/Wien, 2011. https://doi.org/10.1007/978-3-7091-0514-6 DOI: https://doi.org/10.1007/978-3-7091-0514-6
Ludwick A, Aglan H, Abdalla MO, Calhoun M. Degradation behavior of an ultraviolet and hygrothermally aged polyurethane elastomer: Fourier transform infrared and differential scanning calorimetry studies. Journal of Applied Polymer Science 2008; 110(2): 712-8. https://doi.org/10.1002/app.28523 DOI: https://doi.org/10.1002/app.28523
Wilhelm C, Rivaton A, Gardette JL. Infrared analysis of the photochemical behaviour of segmented polyurethanes: 3. Aromatic diisocyanate based polymers. Polymer (Guildf) 1998; 39(5): 1223-1232. https://doi.org/10.1016/S0032-3861(97)00353-4 DOI: https://doi.org/10.1016/S0032-3861(97)00353-4
Rutkowska M, Krasowska K, Heimowska A, Steinka I, Janik H. Degradation of polyurethanes in sea water. Polymer degradation and Stability 2002; 76(2): 233-9. https://doi.org/10.1016/S0141-3910(02)00019-8 DOI: https://doi.org/10.1016/S0141-3910(02)00019-8
Wright P, Wright P. Improvements in the Hydrolytic Stability of Polyurethanes. Aircraft Engineering and Aerospace Technology 1967; 39(11): 20-3. https://doi.org/10.1108/eb034310 DOI: https://doi.org/10.1108/eb034310
Ossefort ZT, Testroet F. Hydrolytic stability of urethane elastomers. Rubber Chem Technol 1966; 39: 1308-1327. https://doi.org/10.5254/1.3547140 DOI: https://doi.org/10.5254/1.3547140
Scholienberger CS, Stewart FD. Thermoplastic Polyurethane Hydrolysis Stability. J Elastomers Plast 1971; 3: 28-56. https://doi.org/10.1177/009524437100300103 DOI: https://doi.org/10.1177/009524437100300305
Murata S, Nakajima T, Tsuzaki N, Yasuda M, Kato T. Synthesis and hydrolysis resistance of polyurethane derived from 2, 4-diethyl-1, 5-pentanediol. Polymer degradation and stability 1998; 61(3): 527-34. https://doi.org/10.1016/S0141-3910(97)00252-8 DOI: https://doi.org/10.1016/S0141-3910(97)00252-8
Delebecq E, Pascault JP, Boutevin B, Ganachaud F. On the versatility of urethane/urea bonds: reversibility, blocked isocyanate, and non-isocyanate polyurethane. Chemical reviews 2012; 113(1): 80-118. https://doi.org/10.1021/cr300195n DOI: https://doi.org/10.1021/cr300195n
Wang TL, Hsieh TH. Effect of polyol structure and molecular weight on the thermal stability of segmented poly (urethaneureas). Polymer degradation and stability 1997; 55(1): 95-102. https://doi.org/10.1016/S0141-3910(96)00130-9 DOI: https://doi.org/10.1016/S0141-3910(96)00130-9
Petrović ZS, Zavargo Z, Flyn JH, Macknight WJ. Thermal degradation of segmented polyurethanes. Journal of Applied Polymer Science 1994; 51(6): 1087-95. https://doi.org/10.1002/app.1994.070510615 DOI: https://doi.org/10.1002/app.1994.070510615
Gama N, Ferreira A, Barros-Timmons A. 3D printed cork/polyurethane composite foams. Materials & Design 2019: 107905. https://doi.org/10.1016/j.matdes.2019.107905 DOI: https://doi.org/10.1016/j.matdes.2019.107905
Król P, Pilch‐Pitera B. Phase structure and thermal stability of crosslinked polyurethane elastomers based on well‐defined prepolymers. Journal of applied polymer science 2007; 104(3): 1464-74. https://doi.org/10.1002/app.25011 DOI: https://doi.org/10.1002/app.25011
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 Journal of Research Updates in Polymer Science
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Policy for Journals/Articles with Open Access
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are permitted and encouraged to post links to their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work
Policy for Journals / Manuscript with Paid Access
Authors who publish with this journal agree to the following terms:
- Publisher retain copyright .
- Authors are permitted and encouraged to post links to their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work .