Synthesis and Applications of Polymeric Reagent p-Substituted Triphenylamine

Authors

  • Ideisan I. Abu-Abdoun Department of Chemistry, University of Sharjah, Sharjah P.O. Box 27272, UAE

DOI:

https://doi.org/10.6000/1929-5995.2021.10.7

Keywords:

Polymeric cation radical, substituted triphenylamine, cationic polymerization reaction, polymeric triphenylamine, chloromethyl styrene resin

Abstract

Chemical modification of chloromethylstyrene - styrene copolymer throughout reaction of p-substituted carboxylic acid group of bis-(4,4`-dibromo)-4``-triphenylamine carboxylic acid with the chloromethyl group attached to a phenyl group was carried out on soluble copolymer and polymeric cross-linked copolymer. Chemical oxidation of the neutral p-substituted triphenylamine with antimony pentachloride in dichloromethane solvent gives the corresponding cation - radical salt with the counter ion antimony hexachloride (SbCl6-). The isolated deep blue color cation radical salt is soluble or in insoluble (resin) form in the copolymer was used as a thermal cationic initiator for the polymerization of epoxy and vinyl monomers at room temperature. The cation radical resin showed good activity and stability compared to the soluble polymeric cation radical, both can initiate the cationic polymerization of cyclohexene oxide and N-vinylcarbazole in dichloromethane at room temperature.

References

Camps M, Chatzopoulos M, Camps J-M, Jean-Pierre. Montheard Chloromethylation of Polystyrenes and Styrene Copolymers. Applications. Journal of Macromolecular Science Part C Polymer Reviews 2006; 27(3): 505-557. https://doi.org/10.1080/07366578708078821 DOI: https://doi.org/10.1080/07366578708078821

Hui Ci, Chen F, Pu F, Xu J. Innovation in protecting-group-free natural product synthesis. Nature Reviews Chemistry 2019; 3: 85-107. https://doi.org/10.1038/s41570-018-0071-1 DOI: https://doi.org/10.1038/s41570-018-0071-1

Abu-Abdoun II. Cationic Photopolymerization by Polymeric Triphenyl Phosphonium Salts. Chemical Science International Journal 2019: 27(4): 1-7. https://doi.org/10.9734/CSJI/2019/v27i430118 DOI: https://doi.org/10.9734/CSJI/2019/v27i430118

Naito K, Miura A. Molecular Design for Nonpolymieric Organic Dye Glasses with Thermal Stability: Relations between Thermodynamic Parameters and Amorphous Properties. Phys Chem 1993; 97: 6240-6248. https://doi.org/10.1021/j100125a025 DOI: https://doi.org/10.1021/j100125a025

Park S-H, Ogino K. Synthesis and characterization of photorefractive polymers with triphenylamine unit and NLO chromophore unit on a side chain. Polymers for Advanced Technologies 2000; 11(7): 349-358. https://doi.org/10.1002/1099-1581(200007)11:7<349::AID-PAT978>3.0.CO;2-Z DOI: https://doi.org/10.1002/1099-1581(200007)11:7<349::AID-PAT978>3.0.CO;2-Z

Yen H-J, Liou G-S. Design and preparation of triphenylamine-based polymeric materials towards emergent optoelectronic applications. Progress in Polymer Science 2019; 89: 250-287. https://doi.org/10.1016/j.progpolymsci.2018.12.001 DOI: https://doi.org/10.1016/j.progpolymsci.2018.12.001

Abu-Abdoun II, Ledwith A. Polymerization Induced by N, N, N′, N′ Tetraphenyl-p-phenylenediamine Cation Radical Salts. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry 1998; 35(4): 673-690. https://doi.org/10.1080/10601329808002005 DOI: https://doi.org/10.1080/10601329808002005

Abu-Abdoun II, Ledwith A. Cationic polymerization photochemically and thermally induced by phenothiazine cation radical salts. European Polymer Journal 1997; 33: 10-12, 1671-1677. https://doi.org/10.1016/S0014-3057(97)00044-X DOI: https://doi.org/10.1016/S0014-3057(97)00044-X

Abu-Abdoun II. Cationic Polymerization Induced by Tris-(p-bromophenyl) Amine Cation-Radical Salts. Journal of Research Updates in Polymer Science 2019; 2021(10): 34-41. https://doi.org/10.6000/1929-5995.2019.08.04 DOI: https://doi.org/10.6000/1929-5995.2019.08.04

Compton RG., Laing ME, Ledwith A, Abu-Abdoun II. “Polymer-coated electrodes: cyclic voltammetry and chronoamperometry of non-ideal systems - the anodic oxidation of poly(4-vinyl-triphenylamine) films. J Appl Electrochem 1988; 18: 431-440. https://doi.org/10.1007/BF01093759 DOI: https://doi.org/10.1007/BF01093759

Abu-Abdoun I, Aal-e-Ali. Photopolymerization of cyclohexene oxide by Phosphonium and Arsonium salts. European Polymer Journal 1993; 29(11): 1445-1450. https://doi.org/10.1016/0014-3057(93)90056-L DOI: https://doi.org/10.1016/0014-3057(93)90056-L

Abu-Abdoun II, Ledwith A. Polymerization of cyclohexene oxide by methyl-4-[bis (4-bromophenyl) amino] benzoate cation radical salts. Journal of Polymer Research 2008; 14(4): 269-276. https://doi.org/10.1007/s10965-007-9106-x DOI: https://doi.org/10.1007/s10965-007-9106-x

Kondo S, Ohtsuka T, Ogura K, Tsuda K. Convenient Synthesis and Free-Radical Copolymerization of p-Chloromethylstyrene. J Macromol Sci Part A – Chem 1979; A13(6): 767-775. https://doi.org/10.1080/00222337908056687 DOI: https://doi.org/10.1080/00222337908056687

Kameyama A, Suzuki M, Ozaki K, Nishikubo T. New Chemical Modification of Polymers with Pendant Chloromethyl Groups Using 1,8 -Diazabicyclo-[5.4.0]-7-undecene. Polymer Journal 1996; 28: 155-158. https://doi.org/10.1295/polymj.28.155 DOI: https://doi.org/10.1295/polymj.28.155

Arshady R, Ledwith A. Suspension polymerisation and its application to the preparation of polymer supports. Reactive Polymers 1983; 1(3): 159-174. https://doi.org/10.1016/0167-6989(83)90015-6 DOI: https://doi.org/10.1016/0167-6989(83)90015-6

Downloads

Published

2021-06-08

How to Cite

Abu-Abdoun, I. I. . (2021). Synthesis and Applications of Polymeric Reagent p-Substituted Triphenylamine . Journal of Research Updates in Polymer Science, 10, 51–57. https://doi.org/10.6000/1929-5995.2021.10.7

Issue

Section

Articles