Preliminary Study on the Biodegradability of Chitosan Films Emulsified with Palm Oils (Aracaceae) from the Brazilian Cerrado

Authors

  • Arlete Barbosa dos Reis Federal University of the Jequitinhonha and Mucuri Valleys, Campus JK, Diamantina, Minas Gerais, Brazil
  • Sônia Ribeiro Arrudas Center of Biological Sciences and Health, Brazil

DOI:

https://doi.org/10.6000/1929-5995.2020.09.06

Keywords:

Biopolymer, Soil, Palm oil, Mauritia flexuosa L.f., Acrocomia aculeata.

Abstract

Non-toxic products with distinguishable characteristics are desirable for use in the packaging sector. Biopolymers fit this criterion and can serve as vehicles for the addition of various compounds, such as enzymes, dyes, antioxidant agents, or monounsaturated fatty acids, to provide useful qualities to a product, such as biodegradability. A biopolymer obtained from fishing industry waste residues can be combined with fatty acids to form films and emulsions with different characteristics to be used in different drug production, packaging, and product protection. This study aimed to use a natural biopolymer, chitosan, in combination with oils from the Mauritia flexuosa L.f., (“buriti”) and Acrocomia aculeata (“macaúba”) species of palm trees to develop films that exhibit excellent biodegradability in soil. The degradation of chitosan films (CF), emulsified chitosan films with buriti oil (CFB), and emulsified chitosan films with macaúba oil (CFM) in soil was investigated, where the CFB samples showed the best protection against moisture and the largest weight reduction over 30, 60, and 90 day testing periods. Further studies are needed to test the practical application of these films, but the results of the CFB sample indicate that these chitosan films imbued with natural oils from the Mauritia flexuosa L.f. and Acrocomia aculeata species have great potential for use in the packaging sector.

References

Chamas A, Moon H, Zheng J, Qiu Y, Tabassum T, Jang JH, Suh, S. Degradation Rates of Plastics in the Environment. ACS Sustainable Chemistry & Engineering 2020. https://doi.org/10.1021/acssuschemeng.9b06635 DOI: https://doi.org/10.1021/acssuschemeng.9b06635

Barnabas SG, Sivakumar GD, Satish PG, Vasantha Geethan KA, Kumar SP, Prithvi Rajeevan P, Kumar PD. Solid waste management across the World-a review. Eco Env & Cons 2017; 23(February Suppl.). https://doi.org/10.13140/RG.2.2.31991.57768

Gonçalves ATT, Moraes FTF, Marques GL, Lima JP, Lima RS. Urban solid waste challenges in the BRICS countries: a systematic literature review. Rev Ambient Água 2018; 13(2): Epub Apr 16. https://doi.org/10.4136/ambi-agua.2157 DOI: https://doi.org/10.4136/ambi-agua.2157

Kaza S, Yao L, Bhada-Tata P and Van Woerden, F. What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050 © 2018 International Bank for Reconstruction and Development / The World Bank 1818 H Street NW, Washington, DC 20433 Telephone: 202-473-1000; Internet: www.worldbank.org.Published: December 2018. ISBN: 978-1-4648-1329-0. e-ISBN: 978-1-4648-1347-4. https://doi.org/10.1596/978-1-4648-1329-0

Geyer R, Jambeck JR, Law KL. Production, use, and fate of all plastics ever made. Sci. Adv., New York, 2017; 3: 6. https://doi.org/10.1126/sciadv.1700782 DOI: https://doi.org/10.1126/sciadv.1700782

Baconguis B. “Stemming the Plastic Flood.” A Break Free from Plastic Movement Report, 2018. https://www.breakfreefromplastic.org/wp-content/uploads/2018/04/Stemming-the-plastic-flood-report.pdf.

Siracusa V, Rocculi P, Romani S, Rosa MD. Biodegradable polymers for food packaging: a review. Trends in Food Science & Technology 2008; 19(12): 634-643. https://doi.org/10.1016/j.tifs.2008.07.003 DOI: https://doi.org/10.1016/j.tifs.2008.07.003

Mostafa HM, Sourell H, Bockisch FJ. The Mechanical Properties of Some Bioplastics Under Different Soil Types for Use as a Biodegradable Drip Tubes. Agricultural Engineering International: the CIGR Ejournal. Manuscript 1497. Vol. XII. March, 2010. https://www.researchgate.net/publication/ 277994731_Mechanical_properties_of_some_bioplastics_under_different_soil_types_used_as_biodegradable_drip_tubes

Ilgenfritz EM. Plastics waste handingpractices in solid waste management. Water Air Soil Pollut 1975; 4: 191-199. https://doi.org/10.1007/bf00160445 DOI: https://doi.org/10.1007/BF00160445

Andreeßen C, Steinbüchel A. Desenvolvimentos recentes em biopolímeros não biodegradáveis: precursores, processos de produção e perspectivas futuras. Microbiologia e Biotecnologia Aplicadas 2018. https://doi.org/10.1007/s00253-018-9483-6 DOI: https://doi.org/10.1007/s00253-018-9483-6

Franchetti SMM, Marconato JC. Biodegradable polymers - a partial way for decreasing the amount of plastic waste. Polímeros biodegradáveis - uma solução parcial para diminuir a quantidade dos resíduos plásticos. Química Nova 2006; 29(4): São Paulo jul./ago. https://doi.org/10.1590/S0100-40422006000400031 DOI: https://doi.org/10.1590/S0100-40422006000400031

Queiroz AUB, Queiroz PC. Innovation and Industrial Trends in Bioplastics, Polymer Reviews 2009; 49(2): 65-78. https://doi.org/10.1080/15583720902834759 DOI: https://doi.org/10.1080/15583720902834759

David E, Chie Hoon S, Alexander S, Jens L. Technology Trends in Biodegradable Polymers: Evidence from Patent Analysis. Polymer Reviews 2016; 56(4): 584-606. https://doi.org/10.1080/15583724.2015.1125918 DOI: https://doi.org/10.1080/15583724.2015.1125918

Wróblewska-Krepsztul J, Rydzkowski T, Borowski G, Szczypiński M, Klepka T & V K Thakur. Recent progress in biodegradable polymers and nanocomposite-based packaging materials for sustainable environment. International Journal of Polymer Analysis and Characterization 2018; 23: 383-395. https://doi.org/10.1080/1023666X.2018.1455382 DOI: https://doi.org/10.1080/1023666X.2018.1455382

Siracusa V. Microbial Degradation of Synthetic Biopolymers Waste Polymers 2019; 11: 1066. https://doi.org/10.3390/polym11061066 DOI: https://doi.org/10.3390/polym11061066

Fernandes SS, Romani VP, da Silva FG, Martins, GV. Chia seeds to develop new biodegradable polymers for food packaging: Properties and biodegradability Polymer Engineering and Science 2020. https://doi.org/10.1002/pen.25464 DOI: https://doi.org/10.1002/pen.25464

Wieczorek AS, Hetz SA, Kolb S. Microbial responses to chitin and chitosan in oxic and anoxic agricultural soil slurries. Biogeosciences 2014; 11: 3339-3352. https://doi.org/10.5194/bg-11-3339-2014 DOI: https://doi.org/10.5194/bg-11-3339-2014

Mohamad R, Aishah S, Osman Z. Antimicrobial properties and degradadtion weight loss and morphology of LLDPE/Chitosan blend. International Journal of Advances in Science Engineering and Technology, ISSN: 2321-9009. http://www.iraj.in/journal/journal_file/journal_pdf/6-205-1449222604167-172.pdf

Mohandas A, Deepthi S, Biswas R, Jayakumar R. Chitosan based metallic nanocomposite scaffolds as antimicrobial wound dressings. Bioactive Materials 2017. https://doi.org/10.1016/j.bioactmat.2017.11.003 DOI: https://doi.org/10.1016/j.bioactmat.2017.11.003

Rollini M, Mascheroni E, Capretti G, Coma V, Musatti A, Piergiovanni L. Propolis and chitosan as antimicrobial and polyphenols retainer for the development of paper based active packaging materials. Food Packaging Shelf Life 2017; 14: 75-82. https://doi.org/10.1016/j.fpsl.2017.08.011 DOI: https://doi.org/10.1016/j.fpsl.2017.08.011

Chen CH, Wang FY, Mao CF, Liao WT, Hsieh CD. Studies of chitosan. II. Preparation and characterization of chitosan/poly(vinylalcohol)/gelatin ternary blend films. International Journal of Biological Macromolecules 2008; 43: 37-42. https://doi.org/10.1016/j.ijbiomac.2007.09.005 DOI: https://doi.org/10.1016/j.ijbiomac.2007.09.005

Muxika A, Etxabide A, Uranga J, Guerrero P, de la Caba K. Chitosan as a bioactive polymer: processing, properties and applications. Int J Biol Macromol 2017; 105: 1358-1368. https://doi.org/10.1016 / j.ijbiomac.2017.07.087 DOI: https://doi.org/10.1016/j.ijbiomac.2017.07.087

Beier S, Bertilsson S. Bacterial chitin degradation—mechanisms and ecophysiological strategies. Frontiers in Microbiology 2013; 4: 149. https://doi.org/10.3389/fmicb.2013.00149 DOI: https://doi.org/10.3389/fmicb.2013.00149

Aam BB, Heggset EB, Norberg AL, Sørlie M, Vårum KM, Eijsink VGH. Production of Chitooligosaccharides and Their Potential Applications in Medicine. Marine Drugs 2010; 8(5): 1482-1517. https://doi.org/10.3390/md8051482 DOI: https://doi.org/10.3390/md8051482

Zhang M, Li XH, Gong YD, Zhao NM, Zhang XF. Properties and biocompatibility of chitosan films modified by blending with PEG. Biomaterials 2002; 23(13): 2641-2648. https://doi.org/10.1016/s0142-9612(01)00403-3 DOI: https://doi.org/10.1016/S0142-9612(01)00403-3

Barra A, Alves Z, Ferreira NM, Martins MA, Oliveira H, Ferreira LP, Cruz MM, Carvalho MD, Neumayer SM, Rodrigues BJ, Nunes C, Ferreira P. Biocompatible chitosan-based composites with properties suitable for hyperthermia therapy. Journal of Materials Chemistry B., 2020. https://doi.org/10.1039/C9TB02067E DOI: https://doi.org/10.1039/C9TB02067E

Piotrowska-Kirschling A, Brzeska J. The Effect of Chitosan on the Chemical Structure, Morphology, and Selected Properties of Polyurethane/Chitosan Composites. Polymers 2020; 12: 1205. https://doi.org/10.3390/polym12051205 DOI: https://doi.org/10.3390/polym12051205

Cândido TLN, Silva MR, Agostini-Costa TS. Bioactive compounds and antioxidant capacity of buriti (Mauritia flexuosa Lf) from the Cerrado and Amazon biomes. Food Chemistry 2015; 177: 313-319. https://doi.org/10.1016/j.foodchem.2015.01.041 DOI: https://doi.org/10.1016/j.foodchem.2015.01.041

Pelosi MS, Leite I, Passos L, Ferreira C, Sabaa-Srur AUO, Fialho E. Phisico-chemical evaluation and antioxidant capacity of buriti extract and antitumor activity in breast câncer cell line. Brazilian Journal of Development 2020; MDA-MB-231. 2020. https://doi.org/10.34117/bjdv6n4-064 DOI: https://doi.org/10.34117/bjdv6n4-064

Pereira Freire JA, Barros KBNT, Lima LKF, Martins JM, Araújo YdC, da Silva Oliveira GL, de Souza Aquino J, Ferreira PMP. Phytochemistry Profile, Nutritional Properties and Pharmacological Activities of Mauritia flexuosa. Journal of Food Science 2016; 81: R2611-R2622. https://doi.org/10.1111/1750-3841.13529 DOI: https://doi.org/10.1111/1750-3841.13529

RIOS, Mary Naves da Silva; PASTORE JÚNIOR, Floriano (org.). Plantas da Amazônia: 450 espécies de uso geral. Brasília: Universidade de Brasília, Biblioteca Central 2011; 3378 p., il. Disponível em: http://repositorio.unb.br/ handle/10482/35458

Carneiro TB, Carneiro JGM. Frutos e polpa desidratada buriti (Mauritia flex uosa l.): aspectos físicos, químicos e tecnológicos. Revista Verde, Mossoró 2011; 6: 105-111. https://pdfs.semanticscholar.org/3fd6/3817d274c5a2ea0ca807cab9d8331a370dee.pdf

Sandri DO, Xisto ALRP, Rodrigues EC, Morais EC, Barros WM. Antioxidant, activity and physicochemical characteristics of buriti pulp (Mauritia flexuosa) collectted in the of Diamantino-MTS. Rev Bras Frutic 2017; 39(3): Jaboticabal July/Aug. 2017 Epub Aug 07. https://doi.org/10.1590/0100-29452017864 DOI: https://doi.org/10.1590/0100-29452017864

Carvalho JO, Orlanda JFF. Heat stability and effect of pH on enzyme activity of polyphenol oxidase in buriti (Mauritia flexuosa Linnaeus f.) fruit extract. Food Chemistry 2017; 233: 159-163. https://doi.org/10.1016/j.foodchem.2017.04.101 DOI: https://doi.org/10.1016/j.foodchem.2017.04.101

Becker MM. Characterization of native fruits of the Amazon region and development of na amperometric biosensor for determination of antioxidante capacity. Tese de doutorado. Universite de Perpignan via Domitia et Universidade Federaldo Maranhão. Brazil-France. September/2019. https://tel.archives-ouvertes.fr/tel-02458919/document

Nonato CFA, Leite DOD, Pereira RC, Boligon AA, Ribeiro-Filho J, Rodrigues FFG, da Costa JGM. Chemical analysis and evaluation of antioxidant and antimicrobial activities of fruit fractions of Mauritia flexuosa L. f. (Arecaceae). Peer J 2018; 6: e5991. https://doi.org/10.7717/peerj.5991 DOI: https://doi.org/10.7717/peerj.5991

Koolen HH, da Silva FM, Gozzo FC, de Souza AQ, de Souza AD. Antioxidant, antimicrobial activities and characterization of phenolic compounds from buriti (Mauritia flexuosa L. f.) by UPLC-ESI-MS/MS. Food Research International 2013; 51(2): 467-473. https://doi.org/10.1016/j.foodres.2013.01.039 DOI: https://doi.org/10.1016/j.foodres.2013.01.039

Preparation, Characterization and Degradation of PS/TPS Blends Using Glycerol and Buriti oil as Plastiscizers. Daniela SchlemmerI; Maria J. A. SalesI; Inês S. ResckII Polímeros: Ciência e Tecnologia 2010; 20(1): 6-13,. https://doi.org/10.1590/S0104-14282010005000002 DOI: https://doi.org/10.1590/S0104-14282010005000002

Oliveira DA, Melo Júnior AF, Brandão MM, Rodrgues LA, Menezes EV, Ferreira, PRB. Genetic diversity in populations of Acrocomia aculeata (Arecaceae) in the northern region of Minas Gerais, Brazil. Genet Mol Res 2012; 11(1): 531-538. https://doi.org/10.4238/2012.March.8.1 DOI: https://doi.org/10.4238/2012.March.8.1

Leitman P, Soares K, Henderson A, Noblick L, Martins RC. 2015. Arecace hamae in Lista de Espécies da Flora do Brasil. 2015; Jardim Botânico do Rio de Janeiro. Disponível em: <http://floradobrasil.jbrj.gov.br/jabot/floradobrasil/ FB15663>.

Lorenzi GMAC. Acrocomia aculeata (Jacq.) Lodd. ex Mart. - Arecaceae: bases para o extrativismo sustentável. 2006, Tese Doutorado em Ciências Agrárias, 156f.. Programa de Pós-Graduaçăo em Agronomia. Universidade Federal do Paraná. https://acervodigital.ufpr.br/handle/1884/5279

Costa SEL, Santos RCS, Castro RVO, Castro AFNM, Magalhães, MA, Carneiro ACO, Santos C PS, Gomes IRF e Rocha SMG. Rev. Árvore 2019; 43(5): Viçosa, Epub Nov 25. Briquetes quality produced with the macaúba epicarp (Acrocomia aculeata) and Pinus sp. Wood. https://doi.org/10.1590/1806-90882019000500001 DOI: https://doi.org/10.1590/1806-90882019000500001

Coelho NHP, Tambarussi EV, Aguiar BI, Roque RH, Portela RM, Braga RC, Gandara FB. Understanding genetic diversity, spatial genetic structure, and mating system through microsatellite markers for the conservation and sustainable use of Acrocomia aculeata (Jacq.) Lodd. Ex Mart. Conservation Genetics 2018; 19(4): 879-891. https://doi.org/10.1007/s10592-018-1061-z DOI: https://doi.org/10.1007/s10592-018-1061-z

Portela, RM. Tamanho efetivo e fluxo gênico em populações de Acrocomia aculeata (Jacq.) Lodd. ex Mart. Usando a teoria da coalescência. Dissertação de mestrado 2019. Irati-PR. https://doi.org/10.13140/RG.2.2.29853.87527

Prado RG, Almeida GD, de Oliveira AR, de Souza PMTG, Cardoso CC, Constantino VR-L, Pasa VMD. Ethanolysis and Methanolysis of Soybean and Macauba Oils Catalyzed by Mixed Oxide Ca-Al from Hydrocalumite for Biodiesel Production. Energy & Fuels 2016; 30(8): 6662-6670. https://doi.org/10.1021/acs.energyfuels.6b00005 DOI: https://doi.org/10.1021/acs.energyfuels.6b00005

Damasceno SM, Ferraz V, Nelson DL, Fabris JD. Selective adsorption of fatty acid methyl esters onto a commercial molecular sieve or activated charcoal prepared from the Acrocomia aculeata cake remaining from press-extracting the fruit kernel oil . AIMS Energy 2018; 6(5): 801-809. https://doi.org/10.3934/energy.2018.5.801 DOI: https://doi.org/10.3934/energy.2018.5.801

Colombo CA, Chorfi Berton LH, Diaz BG, Ferrari RA. Macauba: a promising tropical palm for the production of vegetable oil 2017; OCL, 25: 1. https://doi.org/10.1051/ocl/2017038 DOI: https://doi.org/10.1051/ocl/2017038

Silva GN, Grossi JAS, Carvalho MS, Kuki, KN, Goulart SM, Pimentel LD. Air drying of macauba fruits: maintaining oil quality for biodiesel production. Acta Scientiarum Agronomy 2020; 42: e43451. https://doi.org/10.4025/actasciagron.v42i1.43451 DOI: https://doi.org/10.4025/actasciagron.v42i1.43451

Da Silva JQ, Santos DQ, Fabris JD, Leonardi Harter LV, Chagas SP. Light biodiesel from macaúba and palm kernel: Properties of their blends with fóssil kerosene in the perspective of na alternative aviation fuel renewable. Renewable Energy 2019. https://doi.org/10.1016/j.renene.2019.11.035 DOI: https://doi.org/10.1016/j.renene.2019.11.035

Tilahun WW, Grossi SJA, Favaro SP. Mesocarp oil quality of macauba palm fruit improved by gamma irradiation in storage. Radiation Physics and Chemistry 2020; 168: 108575. https://doi.org/10.1016/j.radphyschem.2019.108575 DOI: https://doi.org/10.1016/j.radphyschem.2019.108575

Lieb VM, Schex R, Esquivel P, Jiménez VM, Schmarr H-G, Carle R, Steingass, CB. Fatty acids and triacylglycerols in the mesocarp and kernel oils of maturing Costa Rican Acrocomia aculeata fruits. NFS Journal 2019. https://doi.org/10.1016/j.nfs.2019.02.002 DOI: https://doi.org/10.1016/j.nfs.2019.02.002

Oliveira DM, Clemente E, Costa JMC. Bioactive compounds and physicochemical parameters of grugru palm (Acrocomia aculeata) from Brazil: pulp and powder. Food Sci Technol Res 2014; 20(1): 7-12. https://doi.org/10.3136/fstr.20.7 DOI: https://doi.org/10.3136/fstr.20.7

Nunes AA, Favaro SP, Galvani F, Miranda CHB. Good practices of harvest and processing provide high quality Macauba pulp oil. European Journal of Lipid Science and Technology 2015; 117(12): 2036-2043. https://doi.org/10.1002/ejlt.201400577 DOI: https://doi.org/10.1002/ejlt.201400577

Del Río JC, Evaristo AB, Marques G, Martín-Ramos P, Martín-Gil J, Gutiérrez A. Chemical composition and thermal behavior of the pulp and kernel oils from macauba palm (Acrocomia aculeata) fruit. Industrial Crops and Products 2016; 84: 294-304. https://doi.org/10.1016/j.indcrop.2016.02.018 DOI: https://doi.org/10.1016/j.indcrop.2016.02.018

Favaro SP, Tapeti CF, Miranda CHB, Ciaconini GC, Miyahira MAM, Roscoe R. Macauba (Acrocomia aculeata) pulp oil quality is negatively affected by drying fruits at 60 ºC. Braz. arch. biol. technol. Curitiba. 2017; 60: Epub May 02 https://doi.org/10.1590/1678-4324-2017160373 DOI: https://doi.org/10.1590/1678-4324-2017160373

Roberston GL. Food Packaging Principles and Practice, third ed., CRC Press, Taylor and Francis Group, Boca Raton, 696p. 13: 978-1-4398-6242-1 (eBook - PDF). 2012. https://www.academia.edu/19121118/Food_Packaging_Principles_and_Practice_3rd_Edition_Robertson_2012_

Priyadarshi R, Rhim JW. Chitosan-based biodegradable functional films for food packaging applications. Innovative Food Science & Emerging Technologies 2020; 102346. https://doi.org/10.1016/j.ifset.2020.102346 DOI: https://doi.org/10.1016/j.ifset.2020.102346

Souza VGL, Pires JRA, Rodrigues C, Coelhoso IM, Fernando ALA. Chitosan Composites in Packaging Industry—Current Trends and Future Challenges. Polymers 2020; 12(2): 417. https://doi.org/10.3390/polym12020417 DOI: https://doi.org/10.3390/polym12020417

Collins CH, Braga GL, Bonato PS. Fundamentos de cromatografia. Campinas: Editora da UNICAMP, 2006; P. 452.

Zamudio-Flores PB, Torres AV, Salgado-Delgado R, Bello-Pérez LA. Influence of the oxidation and acetylation of banana starch on the mechanical and water barrier properties of modifies starch/chitosan blend films. Journal of Applied Polymer Science 2010; 115: 991-998. https://doi.org/10.1002/app.31047 DOI: https://doi.org/10.1002/app.31047

American Standard for Testing and Methods D644-99(2007-Standard Test Method for Moisture Content of Paper and Paperboard by Oven Drying (Withdrawn 2010) - Annual book of American Standard Testing Methods. ASTM, Philadelphia, 2000.

NBRNM-ISO287 de 05/2012 - Papel e cartão - Determinação do teor de umidade de um lote - Método por secagem em estufa (ISO 287:2009, IDT)

Khan MA, Bhattacharia SK, Kader MA, Bahari, K. Preparation and characterization of ultra violet (UV) radiation cured bio-degradable films of sago starch/PVA blend. Carbohydrate Polymers 2006; 63: 500-506. https://doi.org/10.1016/j.carbpol.2005.10.019 DOI: https://doi.org/10.1016/j.carbpol.2005.10.019

Rocha SM, Arrudas SR, Costa FM. Fidêncio PH, Rodrigues MTOS, Silva DS, Nunes YRF, Cardoso Filho O. Efeito do armazenamento nas propriedades físico-químicas do óleo de Macaúba flexuosa L.f. (Aracaceae). Caderno de Ciências Agrárias 2017; 9: 31-37. https://doi.org/10.35699/2447-6218.2017.2947

Coimbra MC, Jorge N. Fatty acids and bioactive compounds of the pulps and kernels of Brazilian palm species, guariroba (Syagrus oleraces), jeriva (Syagrus romanzoffiana) and macauba (Acrocomia aculeata). Journal of the Science of Food and Agriculture 2012; 92(3): 679-684. https://doi.org/10.1002/jsfa.4630 DOI: https://doi.org/10.1002/jsfa.4630

Arrudas SR, Fidêncio PH, Silvério FO, Franco MM, Silva DS. Pimenta MAS. Study of storange conditio non the physicochemical properties of biodiesel derived from macaúba palm (Acrocomia aculeata) oil using multivariate analysis. Aust J Crop Sci 2018; 12: 1702-1709. https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.21475%2Fajcs.18.12.11.p1100 DOI: https://doi.org/10.21475/ajcs.18.12.11.p1100

Vikhoreva GA, Kil’Deeva NR, Ustinov MY, Nochevkina YN. Fabrication and study of the degradation of chitosan films. Fibre Chemistry 2002; 34(6). https://doi.org/10.1023/A:1022904023526 DOI: https://doi.org/10.1023/A:1022904023526

Reis AB, Yoshida CMP, Vilela ESD, Nascimento RS, Melo IS, Franco TT. Biodegradability Kraft Paper Coated with Films Emulsified Chitosan and Palmitic Acid. Journal of Research Updates in Polymer Science 2013; 2: 122-131. https://doi.org/10.6000/1929-5995.2013.02.02.6 DOI: https://doi.org/10.6000/1929-5995.2013.02.02.6

Sawaguchi A, Ono S, Ooomura M, Inami K, Kumeta Y, Honda K, Sameshima-Saito R, Sakamoto K, Ando A, Saito A. Chitosan degradation and associated changes in bacterial community structures in two contrasting soils, Soil Science and Plant Nutrition 2015. https://doi.org/10.1080/00380768.2014.1003965 DOI: https://doi.org/10.1080/00380768.2014.1003965

Zhong Y, Li YF. Effects of storage conditions and acid solvent types on structural, mechanical and physical properties of kudzu starch (Pueraria lobata)-chitosan composite films. Starch 2011; 63(9): 579-586. https://doi.org/10.1002/star.201500033 DOI: https://doi.org/10.1002/star.201100019

Nakashima T, Nakano Y, Bin Y, Matsuo M. Biodegradation characteristics of chitin and chitosan films. Journal of Home Economics of Japan 2005; 56(12): 889-897. https://doi.org/10.11428/jhej1987.56.889

Amaral IBC, Arrudas SR, Meira JR, Reis AB. Análise do processo difusivo de filmes de quitosana contendo óleo de palmeiras (Aracaceae) do cerrado brasileiro. Revista Unimontes Científica 2017; 19(2). http://www.ruc.unimontes. br/index.php/unicientifica/article/view/642

Almeida LG, Magalhães PC, Karam D, Silva EM, Alvarenza AA. Chitosan application in the induction of water deficit tole-rance in maize plants. Acta Scientiarum. Agronomy 2020; 42. https://doi.org/10.4025/actasciagron.v42i1.42463 DOI: https://doi.org/10.4025/actasciagron.v42i1.42463

Katiyar D, Hemantaranjan A, Singh B. Chitosan as a pro-mising natural compound to enhance potential physiological responses in plant: a review. Ind J Plant Physiol 2015; 20(1): 1-9. https://doi.org/10.1007/s40502-015-0139-6 DOI: https://doi.org/10.1007/s40502-015-0139-6

Pastucha A. Chitosan as a compound inhibiting the occurence of soybean diseases. Acta Scientiarum Polonorum, Hortorum Cultus 2008; 7(3): 41-55. http://www.acta.media.pl/pl/action/getfull.php?id=1975

Cândido TLN, Silva MR. Comparison of the physicochemical profiles of buriti from the Brazilian Cerrado and the Amazon region. Food Science and Technology 2017; 37: 78. https://doi.org/10.1590/1678-457x.32516 DOI: https://doi.org/10.1590/1678-457x.32516

Wild B, Li J, Pihlblad J, Bengtson P, Rütting T. Decoupling of priming and microbial N mining during a short-term soil incubation. Soil Biology and Biochemistry 2018. https://doi.org/10.1016/j.soilbio.2018.11.014 DOI: https://doi.org/10.1016/j.soilbio.2018.11.014

Saito Y, Yamanushi T, Oka T, Nakano A. Identification of SEC12, SED4, truncated SEC16, and EKS1/HRD3 as multicopy suppressors of ts mutants of sari GTPase. The Journal of Biochemistry 1999; 125(1): 130-137. https://doi.org/10.1093/oxfordjournals.jbchem.a022249 DOI: https://doi.org/10.1093/oxfordjournals.jbchem.a022249

Heggset EB, Tuveng TR, Hoell IA, Liu Z, Eijsink VGH, Vårum KM. Mode of Action of a Family 75 Chitosanase from Streptomyces avermitilis. Biomacromolecules 2012; 13(6): 1733-1741. https://doi.org/10.1021/bm201521h DOI: https://doi.org/10.1021/bm201521h

Sato K, Azama Y, Nogawa M, Taguchi G, Shimosaka M. Analysis of a change in bacterial community in different environments with addition of chitin or chitosan. Journal of Bioscience and Bioengineering 2010; 109(5): 472-478. https://doi.org/10.1016/j.jbiosc.2009.10.021 DOI: https://doi.org/10.1016/j.jbiosc.2009.10.021

Reis AB, Silva, WC, Souza, IF, Benassi VM, Roa JPB, Graziotti PH, Nelson DL. Determination of the biodegradability of chitosan utilizing the most probable number technique submetido ao periódico Acta Scientarium Biological Science. https://doi.org/10.4025/actascibiolsci.v42i1.52965 DOI: https://doi.org/10.4025/actascibiolsci.v42i1.52965

Downloads

Published

2020-11-09

How to Cite

Reis, A. B. dos ., & Arrudas, S. R. . (2020). Preliminary Study on the Biodegradability of Chitosan Films Emulsified with Palm Oils (Aracaceae) from the Brazilian Cerrado. Journal of Research Updates in Polymer Science, 9, 58–69. https://doi.org/10.6000/1929-5995.2020.09.06

Issue

Section

Articles