Effect of Molybdenum Trioxide in the Behavior of Poly(vinyl alcohol) Nanocomposites Systems Focusing New Systems for Protection against COVID-19
DOI:
https://doi.org/10.6000/1929-5995.2020.09.09Keywords:
COVID-19, molybdenum trioxide, PVA, nanocomposites, NMR relaxation. Download, COVID-19, molybdenum trioxide, PVA, nanocomposites, NMR relaxation, DownloadAbstract
The purpose of this work was to study the molecular dynamics, morphology, mechanical and thermal performance of nanomaterials formed by poly(vinyl alcohol) and molybdenum trioxide (PVA/MoO3) obtained through solution casting method, focusing new materials with therapeutic applications since the molybdenum trioxide exhibit an excellent antibacterial activity and could be a pathway to prevent viruses. The obtaining materials were characterized by conventional techniques as X-ray diffraction, thermogravimetric and dynamical-mechanical analysis. The unconventional low-field NMR relaxometry was used to evaluate the molecular dynamic and morphology of these systems. The results obtained showed that the MoO3 addition into PVA matrix promote an increase on the thermal stability at higher temperatures and a progressive increase on the rigidity of the PVA systems. Also changes in the molecular mobility of nanomaterials determined through the proton spin-lattice relaxation time showed that low proportion of molybdenum trioxide increased the intercalation of the poly(vinyl alcohol) chains between oxide lamellae while higher quantity of molybdenum trioxide caused an inverse effect on the oxide lamellae delamination. From those results the nanomaterials presented a mixed structural organization as intercalated and exfoliated morphologies. According to these first results, the nanocomposites obtained promise to be antimicrobial and antiviral agent to prevent COVID-19 and similar viruses.
References
Lackner M, Maninger S, Guggenbichler JP. Nachr Chem 2013; 61: 112-115. https://doi.org/10.1002/nadc.201390038
Lackner M, Guggenbichler JP. Patent DE102011085862. 2013.
Lackner M, Guggenbichler JP. Patent DE102012103064. 2013.
Guggenbichler JP, Eberhardt N, Martinez HP, Wildner H. Patent US20100057199. 2010.
Shafaei S, Opdenbosch DV, Fey T, Koch M, Kraus T, Guggenbichler JP, Zollfrank C. Materials Science and Engineering C 2016; 58: 1064-1070. https://doi.org/10.1016/j.msec.2015.09.069 DOI: https://doi.org/10.1016/j.msec.2015.09.069
Bechert T, Steinrucke P, Guggenbichler JP. Nat Med 2000; 6: 1053-1056. https://doi.org/10.1038/79568 DOI: https://doi.org/10.1038/79568
Kalaycı OA, Comert FB, Hazer B, Atalay T, Cavicchi KA, Cakmak M. Polym Bull 2010; 5: 215-226. https://doi.org/10.1007/s00289-009-0196-y DOI: https://doi.org/10.1007/s00289-009-0196-y
Delgado K, Quijada R, Palma R, Palza H. Lett Appl Microbiol 2011; 53: 50-54. https://doi.org/10.1111/j.1472-765X.2011.03069.x DOI: https://doi.org/10.1111/j.1472-765X.2011.03069.x
Raghupathi KR, Koodali RT, Manna AC. Langmuir 2011; 27: 4020-4028. https://doi.org/10.1021/la104825u DOI: https://doi.org/10.1021/la104825u
Hazer DB, Burcu D, Mut M, Dincer N, Saribas Z, Hazer B, Ozgen T. Childs Nerv Syst 2012; 28: 839-846. https://doi.org/10.1007/s00381-012-1729-5 DOI: https://doi.org/10.1007/s00381-012-1729-5
Das D, Nath BC, Phukon P, Dolu SK. Colloids Surf B Biointerfaces 2013; 101: 430-433. https://doi.org/10.1016/j.colsurfb.2012.07.002 DOI: https://doi.org/10.1016/j.colsurfb.2012.07.002
Lackner M, Maninger S, Guggenbichler JP. Nachr Chem 2013; 61: 112-115. https://doi.org/10.1002/nadc.201390038 DOI: https://doi.org/10.1002/nadc.201390038
Shafaei S, Lackner M, Voloshchuck R, Voloshchuck I, Guggenbichler JP, Zollfrank C. Recent Patents Mater Sci 2014; 7: 26-36. https://doi.org/10.2174/1874464806666131204235326 DOI: https://doi.org/10.2174/1874464806666131204235326
Shafaei S, Dorrstein J, Guggenbichler JP, Zollfrank C. Letters in Applied Microbiology 2016; 64: 43-50. https://doi.org/10.1111/lam.12670 DOI: https://doi.org/10.1111/lam.12670
Iulianelli GCV, David G, dos S, Santos TN, Sebastião PJO, Tavares MIB. Polymer Testing 2018; 65: 156-162. https://doi.org/10.1016/j.polymertesting.2017.11.018 DOI: https://doi.org/10.1016/j.polymertesting.2017.11.018
Brito LM, Tavares MIB. Journal of Nanoscience and Nanotechnology 2012; 12: 1-6. https://doi.org/10.1166/jnn.2012.6176 DOI: https://doi.org/10.1166/jnn.2012.6176
Almeida AS, Tavares MIB, Silva EO. Polymer Testing 2012; 31: 267-275. https://doi.org/10.1016/j.polymertesting.2011.11.005 DOI: https://doi.org/10.1016/j.polymertesting.2011.11.005
Nogueira RF, Tavares MIB, Ferreira AG. Journal of Nanoparticle Research 2012; 1026-1034.
Monteiro MSSB, da Silva EO, Rodrigues CL, Neto RPC, Tavares MIB. Journal of Nanoscience and Nanotechnology 2012; 12: 7307-7313. https://doi.org/10.1166/jnn.2012.6431 DOI: https://doi.org/10.1166/jnn.2012.6431
Monteiro MSSB, Neto RPC, Santos ICS, da Silva EO, Tavares MIB. Materials Research 2012; 15: n5. https://doi.org/10.1590/S1516-14392012005000121 DOI: https://doi.org/10.1590/S1516-14392012005000121
Soares IP, Chimanowsky JP, Luetkmeyer L, da Silva EO, Souza DHS, Tavares MIB. Journal of Nanoscience and Nanotechnology 2015; 15: 5723-5732. https://doi.org/10.1166/jnn.2015.10041 DOI: https://doi.org/10.1166/jnn.2015.10041
Qureshi N, Chaudhari R, Mane P, Shinde M, Jadakar S, Rane S, Kale B, Bhalerao A, Amalnerkar D. EEE Trans Nanobioscience 2016; 15: 258-264. https://doi.org/10.1109/TNB.2016.2535285 DOI: https://doi.org/10.1109/TNB.2016.2535285
Krishnamoorthy K, Veerapandian M, Yun K, Kim SJ. Colloids Surf B Biointerfaces 2013; 112: 521-524. https://doi.org/10.1016/j.colsurfb.2013.08.026 DOI: https://doi.org/10.1016/j.colsurfb.2013.08.026
Lopes E, Piçarra S, Almeida PL, de Lencastre H, Aires-de-Sousa M. J Med Microbiol 2018; 67: 1042-1046. https://doi.org/10.1099/jmm.0.000789 DOI: https://doi.org/10.1099/jmm.0.000789
Vanderhart DE, Asano A, Gilman JW, Chemical Material 2001; 13: 3796-3809. https://doi.org/10.1021/cm011078x DOI: https://doi.org/10.1021/cm011078x
Brito LM, Chávez FV, Tavares MIB, Sebastião PJO. Polymer Testing 2013; 32: 1181-1185. https://doi.org/10.1016/j.polymertesting.2013.07.002 DOI: https://doi.org/10.1016/j.polymertesting.2013.07.002
Bovey FA, Mirau PA. NMR of Polymers. Academic Press 1996.
Komorosky RA. High resolution NMR spectroscopy of synthetic polymers in bulk. VCH Publishers 1986.
Almeida DBR, Tavares MIB. Materials Science and Applications 2019; 10: 768-782. https://doi.org/10.4236/msa.2019.1012056 DOI: https://doi.org/10.4236/msa.2019.1012056
Cecci R, Passos AA, Albino NRV, Silva VD, Duarte AS, Tavares MIB. Journal of Materials Science and Engineering B 2020; 10: 53-63.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Policy for Journals/Articles with Open Access
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are permitted and encouraged to post links to their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work
Policy for Journals / Manuscript with Paid Access
Authors who publish with this journal agree to the following terms:
- Publisher retain copyright .
- Authors are permitted and encouraged to post links to their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work .