A Review on Carbon Nanotubes: Preparation, Properties and Applications
DOI:
https://doi.org/10.6000/1929-5995.2020.09.10Keywords:
Nanotubes, Nanotechnology, SWCNTs and MWCNTs, Nanomedicine, GrapheneAbstract
Carbon nanotubes(CNTs) have achieved attention in recent times because of their extraordinary physicochemical properties like strength, flexibility, sensors, conducting etc. Carbon nanotubes(CNTs) are known as nano-architectured allotropes of carbon, having graphene sheets which are rolled up into cylinder that forms carbon nanotubes. In the field of nanotechnology, carbon nanotubes are the one of the most unique invention. The eye-catching features of carbon nanotubes are their electronic, mechanical, optical and chemical characteristics, which open a way to future applications. Carbon nanotubes can be single walled and multi walled which can be produced in various ways. The most common techniques used nowadays are: arc discharge, laser ablation and chemical vapour deposition. In this review article,the applications of CNTs in various technologically important fields are discussed in detail.
References
Rogers JA, Someya T, Huang Y. Materials and mechanics for stretchable electronics. Science 2010; 327(5973): 1603-1607. https://doi.org/10.1126/science.1182383 DOI: https://doi.org/10.1126/science.1182383
Hu L, Pasta M, La Mantia F, Cui L, Jeong S, Deshazer HD, Cui Y. Stretchable, porous, and conductive energy textiles. Nano Letters 2010; 10(2): 708-714. https://doi.org/10.1021/nl903949m DOI: https://doi.org/10.1021/nl903949m
Ouyang M, Huang JL, Cheung CL, Lieber CM. Atomically resolved single-walled carbon nanotube intramolecular junctions. Science 2001; 291(5501): 97-100. https://doi.org/10.1126/science.291.5501.97 DOI: https://doi.org/10.1126/science.291.5501.97
Kim H, Lee J, Kahng SJ, Son YW, Lee SB, Lee CK, Kuk Y. Direct observation of localized defect states in semiconductor nanotube junctions. Physical Review Letters 2003; 90(21): 216107. https://doi.org/10.1103/PhysRevLett.90.216107 DOI: https://doi.org/10.1103/PhysRevLett.90.216107
Chico L, Crespi VH, Benedict LX, Louie SG, Cohen ML. Pure carbon nanoscale devices: nanotube heterojunctions. Physical Review Letters 1996; 76(6): 971. https://doi.org/10.1103/PhysRevLett.76.971 DOI: https://doi.org/10.1103/PhysRevLett.76.971
Kaushik BK, Majumder MK. Carbon nanotube based VLSI interconnects: Analysis and design. New Delhi: Springer India 2015; pp. 1-14. https://doi.org/10.1007/978-81-322-2047-3_1 DOI: https://doi.org/10.1007/978-81-322-2047-3_1
Iijima S. Helical microtubules of graphitic carbon. Nature 1991; 354(6348): 56-58. https://doi.org/10.1038/354056a0 DOI: https://doi.org/10.1038/354056a0
Varshney K. Carbon nanotubes: a review on synthesis, properties and applications. International Journal of Engineering Research and General Science 2014; 2(4): 660-677.
Grabowska J. Fulereny-przyszłość zastosowań w medycynie i farmacji. Gazeta Farmaceutyczna 2008; 6: 38-40.
Harris PJ, Harris PJF. Carbon nanotube science: synthesis, properties and applications. Cambridge university press 2009. https://doi.org/10.1017/CBO9780511609701 DOI: https://doi.org/10.1017/CBO9780511609701
Rius G Technologies of Carbon Materials. Syntheses and Preparations. In Carbon for Sensing Devices. Springer, Cham 2015; pp. 15-42. https://doi.org/10.1007/978-3-319-08648-4_2 DOI: https://doi.org/10.1007/978-3-319-08648-4_2
Lee J, Kim T, Jung Y, Jung K, Park J, Lee DM, Kim SM. High-strength carbon nanotube/carbon composite fibers via chemical vapor infiltration. Nanoscale 2016; 8(45): 18972-18979. https://doi.org/10.1039/C6NR06479E DOI: https://doi.org/10.1039/C6NR06479E
Chua M, Chui CK, Chng CB, Lau D. Carbon nanotube-based artificial tracheal prosthesis: Carbon nanocomposite implants for patient-specific ENT care. IEEE Nanotechnology Magazine 2013; 7(4): 27-31. https://doi.org/10.1109/MNANO.2013.2289691 DOI: https://doi.org/10.1109/MNANO.2013.2289691
Arunachalam S, Gupta AA, Izquierdo R, Nabki F. Suspended carbon nanotubes for humidity sensing. Sensors 2018; 18(5): 1655. https://doi.org/10.3390/s18051655 DOI: https://doi.org/10.3390/s18051655
Ketabi S, Rahmani L. Carbon nanotube as a carrier in drug delivery system for carnosine dipeptide: A computer simulation study. Materials Science and Engineering: C 2017; 73: 173-181. https://doi.org/10.1016/j.msec.2016.12.058 DOI: https://doi.org/10.1016/j.msec.2016.12.058
Kumar S, Nehra M, Kedia D, Dilbaghi N, Tankeshwar K, Kim KH. Carbon nanotubes: A potential material for energy conversion and storage. Progress in Energy and Combustion Science 2018; 64: 219-253. https://doi.org/10.1016/j.pecs.2017.10.005 DOI: https://doi.org/10.1016/j.pecs.2017.10.005
Puett C, Inscoe C, Hartman A, Calliste J, Franceschi DK, Lu J, Lee YZ. An update on carbon nanotube‐enabled X‐ray sources for biomedical imaging. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 2018; 10(1): e1475. https://doi.org/10.1002/wnan.1475 DOI: https://doi.org/10.1002/wnan.1475
Sun Y, Yun KN, Leti G, Lee SH, Song YH, Lee CJ. High-performance field emission of carbon nanotube paste emitters fabricated using graphite nanopowder filler. Nanotechnology 2017; 28(6): 065201. https://doi.org/10.1088/1361-6528/aa523e DOI: https://doi.org/10.1088/1361-6528/aa523e
Zhao T, Ji X, Jin W, Yang W, Li T. Hydrogen storage capacity of single-walled carbon nanotube prepared by a modified arc discharge. Fullerenes, Nanotubes and Carbon Nanostructures 2017; 25(6): 355-358. https://doi.org/10.1080/1536383X.2017.1305358 DOI: https://doi.org/10.1080/1536383X.2017.1305358
Xu JL, Dai RX, Xin Y, Sun YL, Li X, Yu YX, Ren TL. Efficient and reversible electron doping of semiconductor-enriched single-walled carbon nanotubes by using decamethylcobaltocene. Scientific Reports 2017; 7(1): 1-10. https://doi.org/10.1038/s41598-017-05967-w DOI: https://doi.org/10.1038/s41598-017-05967-w
Choi J, Park BC, Ahn SJ, Kim DH, Lyou J, Dixson RG, Vorburger TV. Evaluation of carbon nanotube probes in critical dimension atomic force microscopes. Journal of Micro/Nanolithography, MEMS, and MOEMS 2016; 15(3): 034005. https://doi.org/10.1117/1.JMM.15.3.034005 DOI: https://doi.org/10.1117/1.JMM.15.3.034005
Chen S, Shan B, Yang Y, Yuan G, Huang S, Lu X, Liu J. An overview of carbon nanotubes based interconnects for microelectronic packaging. In 2017 IMAPS Nordic Conference on Microelectronics Packaging (NordPac). IEEE 2017; pp. 113-119. https://doi.org/10.1109/NORDPAC.2017.7993175 DOI: https://doi.org/10.1109/NORDPAC.2017.7993175
Baughman RH, Zakhidov AA, De Heer WA. Carbon nanotubes--the route toward applications. Science 2002; 297(5582): 787-792. https://doi.org/10.1126/science.1060928
Cao J, Wang Q, Rolandi M, Dai H. Aharonov-bohm interference and beating in single-walled carbon-nanotube interferometers. Physical Review Letters 2004; 93(21): 216803. https://doi.org/10.1103/PhysRevLett.93.216803 DOI: https://doi.org/10.1103/PhysRevLett.93.216803
Biercuk MJ, Llaguno MC, Radosavljevic M, Hyun JK, Johnson AT, Fischer JE. Carbon nanotube composites for thermal management. Applied Physics Letters 2002; 80(15): 2767-2769. https://doi.org/10.1063/1.1469696 DOI: https://doi.org/10.1063/1.1469696
Peigney A. Tougher ceramics with nanotubes. Nature Materials 2003; 2(1): 15-16. https://doi.org/10.1038/nmat794 DOI: https://doi.org/10.1038/nmat794
Kong J, Franklin NR, Zhou C, Chapline MG, Peng S, Cho K, Dai H. Nanotube molecular wires as chemical sensors. Science 2000; 287(5453): 622-625. https://doi.org/10.1126/science.287.5453.622 DOI: https://doi.org/10.1126/science.287.5453.622
Srivastava A, Srivastava S, Kalaga K. Carbon nanotube membrane filters. In Springer Handbook of Nanomaterials; Springer, Berlin, Heidelberg 2013; pp. 1099-1116. https://doi.org/10.1007/978-3-642-20595-8_31 DOI: https://doi.org/10.1007/978-3-642-20595-8_31
Li J, Stevens R, Delzeit L, Ng HT, Cassell A, Han J, Meyyappan M. Electronic properties of multiwalled carbon nanotubes in an embedded vertical array. Applied Physics Letters 2002; 81(5): 910-912. https://doi.org/10.1063/1.1496494 DOI: https://doi.org/10.1063/1.1496494
Che G, Lakshmi BB, Fisher ER, Martin CR. Carbon nanotubule membranes for electrochemical energy storage and production. Nature 1998; 393(6683): 346-349. https://doi.org/10.1038/30694 DOI: https://doi.org/10.1038/30694
Aqel A, Abou El-Nour KM, Ammar RA, Al-Warthan A. Carbon nanotubes, science and technology part (I) structure, synthesis and characterisation. Arabian Journal of Chemistry 2012; 5(1): 1-23. https://doi.org/10.1016/j.arabjc.2010.08.022 DOI: https://doi.org/10.1016/j.arabjc.2010.08.022
Popov VN. Carbon nanotubes: properties and application. Materials Science and Engineering: R: Reports 2004; 43(3): 61-102. https://doi.org/10.1016/j.mser.2003.10.001
Wilder JW, Venema LC, Rinzler AG, Smalley RE, Dekker C. Electronic structure of atomically resolved carbon nanotubes. Nature 1998; 391(6662): 59-62. https://doi.org/10.1038/34139 DOI: https://doi.org/10.1038/34139
Ganesh EN. Single walled and multi walled carbon nanotube structure, synthesis and applications. International Journal of Innovative Technology and Exploring Engineering 2013; 2(4): 311-320.
Iijima S, Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter. Nature 1993; 363(6430): 603-605. https://doi.org/10.1038/363603a0 DOI: https://doi.org/10.1038/363603a0
Brenner DW. Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Physical Review B 1990; 42(15): 9458. https://doi.org/10.1103/PhysRevB.42.9458 DOI: https://doi.org/10.1103/PhysRevB.42.9458
Zhao T, Li G, Liu L, Du L, Liu Y, Li T. Hydrogen storage behavior of amorphous carbon nanotubes at low pressure and room temperature. Fullerenes, Nanotubes and Carbon Nanostructures 2011; 19(8): 677-683. https://doi.org/10.1080/1536383X.2010.515757 DOI: https://doi.org/10.1080/1536383X.2010.515757
Kaushik BK, Majumder MK. Carbon nanotube: Properties and applications. In Carbon Nanotube Based VLSI Interconnects; Springer, New Delhi 2015; pp. 17-37. https://doi.org/10.1007/978-81-322-2047-3_2 DOI: https://doi.org/10.1007/978-81-322-2047-3_2
Sinnott SB, Andrews R. Carbon nanotubes: synthesis, properties, and applications. Critical Reviews in Solid State and Materials Sciences 2001; 26(3): 145-249. https://doi.org/10.1080/20014091104189 DOI: https://doi.org/10.1080/20014091104189
Mamalis AG, Vogtländer LOG, Markopoulos A. Nanotechnology and nanostructured materials: trends in carbon nanotubes. Precision Engineering 2004; 28(1): 16-30. https://doi.org/10.1016/j.precisioneng.2002.11.002 DOI: https://doi.org/10.1016/j.precisioneng.2002.11.002
Li WZ, Xie SS, Qian LX, Chang BH, Zou BS, Zhou WY, Wang G. Large-scale synthesis of aligned carbon nanotubes. Science 1996; 274(5293): 1701-1703. https://doi.org/10.1126/science.274.5293.1701 DOI: https://doi.org/10.1126/science.274.5293.1701
Duesberg GS, Muster J, Byrne HJ, Roth S, Burghard M. Towards processing of carbon nanotubes for technical applications. Applied Physics A 1999; 69(3): 269-274. https://doi.org/10.1007/s003390051001 DOI: https://doi.org/10.1007/s003390051001
Ibrahim KS. Carbon nanotubes-properties and applications: a review. Carbon Letters 2013; 14(3): 131-144. https://doi.org/10.5714/CL.2013.14.3.131 DOI: https://doi.org/10.5714/CL.2013.14.3.131
Zhu J, Holmen A, Chen D. Carbon nanomaterials in catalysis: proton affinity, chemical and electronic properties, and their catalytic consequences. ChemCatChem 2013; 5(2): 378-401. https://doi.org/10.1002/cctc.201200471 DOI: https://doi.org/10.1002/cctc.201200471
Karami M, Bahabadi MA, Delfani S, Ghozatloo A. A new application of carbon nanotubes nanofluid as working fluid of low-temperature direct absorption solar collector. Solar Energy Materials and Solar Cells 2014; 121: 114-118. https://doi.org/10.1016/j.solmat.2013.11.004 DOI: https://doi.org/10.1016/j.solmat.2013.11.004
Esfe MH, Saedodin S, Yan WM, Afrand M, Sina N. Study on thermal conductivity of water-based nanofluids with hybrid suspensions of CNTs/Al 2 O 3 nanoparticles. Journal of Thermal Analysis and Calorimetry 2016; 124(1): 455-460. https://doi.org/10.1007/s10973-015-5104-0 DOI: https://doi.org/10.1007/s10973-015-5104-0
Mauter MS, Elimelech M. Environmental applications of carbon-based nanomaterials. Environmental Science & Technology 2008; 42(16): 5843-5859. https://doi.org/10.1021/es8006904 DOI: https://doi.org/10.1021/es8006904
Thirumal V, Pandurangan A, Jayavel R, Krishnamoorthi SR, Ilangovan R. Synthesis of nitrogen doped coiled double walled carbon nanotubes by chemical vapor deposition method for supercapacitor applications. Current Applied Physics 2016; 16(8): 816-825. https://doi.org/10.1016/j.cap.2016.04.018 DOI: https://doi.org/10.1016/j.cap.2016.04.018
Peng H, Alemany LB, Margrave JL, Khabashesku VN. Sidewall carboxylic acid functionalization of single-walled carbon nanotubes. Journal of the American Chemical Society 2003; 125(49): 15174-15182. https://doi.org/10.1021/ja037746s DOI: https://doi.org/10.1021/ja037746s
Liang J. Exploration of carbon nanotube and copper-carbon nanotube composite for next generation on-chip energy efficient interconnect applications (Doctoral dissertation, Université Montpellier) 2019.
Robertson DH, Brenner DW, Mintmire JW. Energetics of nanoscale graphitic tubules. Physical Review B 1992; 45(21): 12592. https://doi.org/10.1103/PhysRevB.45.12592 DOI: https://doi.org/10.1103/PhysRevB.45.12592
Yu MF, Files BS, Arepalli S, Ruoff RS. Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Physical Review Letters 2000; 84(24): 5552. https://doi.org/10.1103/PhysRevLett.84.5552 DOI: https://doi.org/10.1103/PhysRevLett.84.5552
Saifuddin N, Raziah AZ, Junizah AR. Carbon nanotubes: a review on structure and their interaction with proteins. Journal of Chemistry 2013; 2013. https://doi.org/10.1155/2013/676815 DOI: https://doi.org/10.1155/2013/676815
Zhang W, Zhang Z, Zhang Y. The application of carbon nanotubes in target drug delivery systems for cancer therapies. Nanoscale Research Letters 2011; 6(1): 1-22. https://doi.org/10.1186/1556-276X-6-555 DOI: https://doi.org/10.1186/1556-276X-6-555
Rosen Y, Elman NM. Carbon nanotubes in drug delivery: focus on infectious diseases. Expert Opinion on Drug Delivery 2009; 6(5): 517-530. https://doi.org/10.1517/17425240902865579 DOI: https://doi.org/10.1517/17425240902865579
He H, Pham-Huy LA, Dramou P, Xiao D, Zuo P, Pham-Huy C. Carbon nanotubes: applications in pharmacy and medicine. BioMed Research International 2013; 2013. https://doi.org/10.1155/2013/578290 DOI: https://doi.org/10.1155/2013/578290
Yang F, Jin C, Yang D, Jiang Y, Li, J, Di Y, Fu D. Magnetic functionalised carbon nanotubes as drug vehicles for cancer lymph node metastasis treatment. European Journal of Cancer 2011; 47(12): 1873-1882. https://doi.org/10.1016/j.ejca.2011.03.018 DOI: https://doi.org/10.1016/j.ejca.2011.03.018
Marquis FD. Fully integrated hybrid polymeric carbon nanotube composites. In Materials Science Forum. Trans Tech Publications Ltd., Zurich-Uetikon, Switzerland 2003; Vol. 437: pp. 85-88. https://doi.org/10.4028/www.scientific.net/MSF.437-438.85 DOI: https://doi.org/10.4028/www.scientific.net/MSF.437-438.85
Bian Z, Wang RJ, Wang WH, Zhang T, Inoue A. Carbon‐Nanotube‐Reinforced Zr‐Based Bulk Metallic Glass Composites and Their Properties. Advanced Functional Materials 2004; 14(1): 55-63. https://doi.org/10.1002/adfm.200304422 DOI: https://doi.org/10.1002/adfm.200304422
Pham-Huy LA, He H, Pham-Huy C. Free radicals, antioxidants in disease and health. International Journal of Biomedical Science: IJBS 2008; 4(2): 89.
Bekyarova E, Ni Y, Malarkey EB, Montana V, McWilliams JL, Haddon RC, Parpura V. Applications of carbon nanotubes in biotechnology and biomedicine. Journal of Biomedical Nanotechnology 2005; 1(1): 3-17. https://doi.org/10.1166/jbn.2005.004 DOI: https://doi.org/10.1166/jbn.2005.004
Liao H, Paratala B, Sitharaman B, Wang Y. Applications of carbon nanotubes in biomedical studies. In Biomedical Nanotechnology. Humana Press 2011; pp. 223-241. https://doi.org/10.1007/978-1-61779-052-2_15 DOI: https://doi.org/10.1007/978-1-61779-052-2_15
Pai P, Nair K, Jamade S, Shah R, Ekshinge V, Jadhav N. Pharmaceutical applications of carbon tubes and nanohorns. Current Pharma Esearch Journal 2006; 1: 11-15.
Ding RG, Lu GQ, Yan ZF, Wilson MA. Recent advances in the preparation and utilization of carbon nanotubes for hydrogen storage. Journal of Nanoscience and Nanotechnology 2001; 1(1): 7-29. https://doi.org/10.1166/jnn.2001.012 DOI: https://doi.org/10.1166/jnn.2001.012
Kuznetsova A, Mawhinney DB, Naumenko V, Yates Jr, JT, Liu J, Smalley RE. Enhancement of adsorption inside of single-walled nanotubes: opening the entry ports. Chemical Physics Letters 2000; 321(3-4): 292-296. https://doi.org/10.1016/S0009-2614(00)00341-9 DOI: https://doi.org/10.1016/S0009-2614(00)00341-9
Shi X, Sitharaman B, Pham QP, Spicer PP, Hudson JL, Wilson LJ, Mikos AG. In vitro cytotoxicity of single‐walled carbon nanotube/biodegradable polymer nanocomposites. Journal of Biomedical Materials Research Part A 2008; 86(3): 813-823. https://doi.org/10.1002/jbm.a.31671 DOI: https://doi.org/10.1002/jbm.a.31671
Harrison BS, Atala A. Carbon nanotube applications for tissue engineering. Biomaterials 2007; 28(2): 344-353. https://doi.org/10.1016/j.biomaterials.2006.07.044 DOI: https://doi.org/10.1016/j.biomaterials.2006.07.044
Singh R, Pantarotto D, Lacerda L, Pastorin G, Klumpp C, Prato M, Kostarelos K. Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proceedings of the National Academy of Sciences 2006; 103(9): 3357-3362. https://doi.org/10.1073/pnas.0509009103 DOI: https://doi.org/10.1073/pnas.0509009103
Wang SF, Shen L, Zhang WD, Tong YJ. Preparation and mechanical properties of chitosan/carbon nanotubes composites. Biomacromolecules 2005; 6(6): 3067-3072. https://doi.org/10.1021/bm050378v DOI: https://doi.org/10.1021/bm050378v
MacDonald RA, Laurenzi BF, Viswanathan G, Ajayan PM, Stegemann JP. Collagen–carbon nanotube composite materials as scaffolds in tissue engineering. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials 2005; 74(3): 489-496. https://doi.org/10.1002/jbm.a.30386 DOI: https://doi.org/10.1002/jbm.a.30386
Castillo JJ, Svendsen WE, Rozlosnik N, Escobar P, Martínez F, Castillo-León J. Detection of cancer cells using a peptide nanotube–folic acid modified graphene electrode. Analyst 2013; 138(4): 1026-1031. https://doi.org/10.1039/C2AN36121C DOI: https://doi.org/10.1039/C2AN36121C
Eatemadi A, Daraee H, Zarghami N, Melat Yar H, Akbarzadeh A. Nanofiber: synthesis and biomedical applications. Artificial Cells, Nanomedicine, and Biotechnology 2016; 44(1): 111-121. https://doi.org/10.3109/21691401.2014.922568 DOI: https://doi.org/10.3109/21691401.2014.922568
Qiu W, Xu H, Takalkar S, Gurung AS, Liu B, Zheng Y, Liu G. Carbon nanotube-based lateral flow biosensor for sensitive and rapid detection of DNA sequence. Biosensors and Bioelectronics 2015; 64: 367-372. https://doi.org/10.1016/j.bios.2014.09.028 DOI: https://doi.org/10.1016/j.bios.2014.09.028
Sinha N, Yeow JW. Carbon nanotubes for biomedical applications. IEEE Transactions on Nanobioscience 2005; 4(2): 180-195. https://doi.org/10.1109/TNB.2005.850478 DOI: https://doi.org/10.1109/TNB.2005.850478
Joseph H. MEMS in the medical world. Sensors-the Journal of Applied Sensing Technology 1997; 14(4): 47-51.
Foroughi J, Spinks GM, Aziz S, Mirabedini A, Jeiranikhameneh A, Wallace GG, Baughman RH. Knitted carbon-nanotube-sheath/spandex-core elastomeric yarns for artificial muscles and strain sensing. ACS Nano 2016; 10(10): 9129-9135. https://doi.org/10.1021/acsnano.6b04125 DOI: https://doi.org/10.1021/acsnano.6b04125
Wu L, Qu X. Cancer biomarker detection: recent achievements and challenges. Chemical Society Reviews 2015; 44(10): 2963-2997. https://doi.org/10.1039/C4CS00370E DOI: https://doi.org/10.1039/C4CS00370E
Liu CH, Wu CC, Zhong Z. A fully tunable single-walled car-bon nanotube diode. Nano Letters 2011; 11(4): 1782-1785. https://doi.org/10.1021/nl200371z DOI: https://doi.org/10.1021/nl200371z
Lee JU. Photovoltaic effect in ideal carbon nanotube diodes. Applied Physics Letters 2005; 87(7): 073101. https://doi.org/10.1063/1.2010598 DOI: https://doi.org/10.1063/1.2010598
Vakhrushev AV, Vakhrushev AA, Chuckova NN, Cherenkov IA, Cormilina NV. Adsorption of Cholesterol by Carbon Nanotubes. Carbon Nanotubes and Nanoparticles: Current and Potential Applications 2019; 65. https://doi.org/10.1201/9780429463877-4 DOI: https://doi.org/10.1201/9780429463877-4
Huang X, Mclean RS, Zheng M. High-resolution length sorting and purification of DNA-wrapped carbon nanotubes by size-exclusion chromatography. Analytical Chemistry 2005; 77(19): 6225-6228. https://doi.org/10.1021/ac0508954 DOI: https://doi.org/10.1021/ac0508954
Rinzler AG, Liu J, Dai H, Nikolaev P, Huffman CB, Rodriguez-Macias FJ, Smalley RE. Large-scale purification of single-wall carbon nanotubes: process, product, and characterization. Applied Physics A: Materials Science & Processing 1998; 67(1). https://doi.org/10.1007/s003390050734 DOI: https://doi.org/10.1007/s003390050734
Gu Z, Peng H, Hauge RH, Smalley RE, Margrave JL. Cutting single-wall carbon nanotubes through fluorination. Nano Letters 2002; 2(9): 1009-1013. https://doi.org/10.1021/nl025675+ DOI: https://doi.org/10.1021/nl025675+
Popov VN. Carbon nanotubes: properties and application. Materials Science and Engineering: R: Reports 2004; 43(3): 61-102. https://doi.org/10.1016/j.mser.2003.10.001 DOI: https://doi.org/10.1016/j.mser.2003.10.001
Baughman RH, Zakhidov AA, De Heer WA. Carbon nanotubes--the route toward applications. Science 2002; 297(5582): 787-792. https://doi.org/10.1126/science.1060928 DOI: https://doi.org/10.1126/science.1060928
Terrones M. Science and technology of the twenty-first century: synthesis, properties, and applications of carbon nanotubes. Annual Review of Materials Research 2003; 33(1): 419-501. https://doi.org/10.1146/annurev.matsci.33.012802.100255 DOI: https://doi.org/10.1146/annurev.matsci.33.012802.100255
Dai H, Wong EW, Lu YZ, Fan S, Lieber CM. Synthesis and characterization of carbide nanorods. Nature 1995; 375(6534): 769-772. https://doi.org/10.1038/375769a0 DOI: https://doi.org/10.1038/375769a0
Ajayan PM, Zhou OZ. Applications of carbon nanotubes. Carbon nanotubes 2001; 391-425. https://doi.org/10.1007/3-540-39947-X_14 DOI: https://doi.org/10.1007/3-540-39947-X_14
De Heer WA. Nanotubes and the pursuit of applications. MRS Bulletin 2004; 29(4): 281-285. https://doi.org/10.1557/mrs2004.81 DOI: https://doi.org/10.1557/mrs2004.81
Ye XR, Lin Y, Wang C, Wai CM. Supercritical fluid fabrication of metal nanowires and nanorods templated by multiwalled carbon nanotubes. Advanced Materials 2003; 15(4): 316-319. https://doi.org/10.1002/adma.200390077 DOI: https://doi.org/10.1002/adma.200390077
Han W, Fan S, Li Q, Hu Y. Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction. Science 1997; 277(5330): 1287-1289. https://doi.org/10.1126/science.277.5330.1287 DOI: https://doi.org/10.1126/science.277.5330.1287
Bower C, Rosen R, Jin L, Han J, Zhou O. Deformation of carbon nanotubes in nanotube–polymer composites. Applied Physics Letters 1999; 74(22): 3317-3319. https://doi.org/10.1063/1.123330 DOI: https://doi.org/10.1063/1.123330
Kaur R, Vatta P, Kaur M. Carbon Nanotubes: A Review Article. International Journal for Research in Applied Science and Engineering Technology. India 2018; 6(4): 5075-5077. https://doi.org/10.22214/ijraset.2018.4827 DOI: https://doi.org/10.22214/ijraset.2018.4827
Rafique MMA, Iqbal J. Production of carbon nanotubes by different routes-a review. Journal of Encapsulation and Adsorption Sciences 2011; 1(02): 29. https://doi.org/10.4236/jeas.2011.12004 DOI: https://doi.org/10.4236/jeas.2011.12004
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Policy for Journals/Articles with Open Access
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are permitted and encouraged to post links to their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work
Policy for Journals / Manuscript with Paid Access
Authors who publish with this journal agree to the following terms:
- Publisher retain copyright .
- Authors are permitted and encouraged to post links to their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work .