Cellulose Ether-Based Liquid Crystal Materials: Review Article

Authors

  • Altaf H. Basta Cellulose and Paper Dept., National Research Centre, El-Buhooth Stree, Dokki-12622, Cairo, Egypt
  • Vivian F. Lotfy Cellulose and Paper Dept., National Research Centre, El-Buhooth Stree, Dokki-12622, Cairo, Egypt
  • Jehane A. Micky Department of Chemistry, Faculty of Science (Girl’s), Al-Azhar University, Nasr City, Cairo, Egypt
  • Aya M. Salem Cellulose and Paper Dept., National Research Centre, El-Buhooth Stree, Dokki-12622, Cairo, Egypt

DOI:

https://doi.org/10.6000/1929-5995.2021.10.9

Keywords:

Cellulose ether, Cellulose-based nanoparticles, Rheology, Polarizing microscopy, Liquid crystal materials

Abstract

The development of liquid crystal materials via nanotechnology has become an interesting subject of research in optical material chemistry. One of the significant nanomaterials is cellulose-based nanoparticles. In this review article, we highlighted the classification of liquid crystal materials (LCs), and types of cellulose-NPs and their characterization as LCs materials. Finally, we present our promising data on the synergistic effect of cellulose-NPs on liquid crystal behavior of ethyl cellulose- and hydroxypropyl cellulose- nanocomposites.

References

Lavanya D, Kulkarni P, Dixit M, Raavi PK, Krishna LNV. Source of cellulose derivatives and their applications. Int J Drug Form Res 2011; 2: 19-38.

Hu J, Chen S, A review of actively moving polymers in textile applications. J Mater Chem 2010; 20(17): 3346-3355. https://doi.org/10.1039/b922872a DOI: https://doi.org/10.1039/b922872a

Thakur, VK; Thakur MK, Gupta RK. Development of functionalized cellulosic biopolymers by graft copolymerization. Int J Biol Macromol 2013; 62: 44-51. https://doi.org/10.1016/j.ijbiomac.2013.08.026 DOI: https://doi.org/10.1016/j.ijbiomac.2013.08.026

Basta AH, El-Saied H, Lotfy VF. Performance assessment of deashed and dewaxed rice straw on improving the quality of RS-based composites. RSC Adv 2013; 4 (42): 21794-21801. https://doi.org/10.1039/C4RA00858H DOI: https://doi.org/10.1039/C4RA00858H

Basta AH, Khwaldia K, Aloui H, El-Saied H. Enhancing the performance of carboxymethyl cellulose by chitosan in producing barrier coated paper sheets. Nordic Pulp Paper Res J 2015; 30 (4): 617-625. https://doi.org/10.3183/npprj-2015-30-04-p617-625 DOI: https://doi.org/10.3183/npprj-2015-30-04-p617-625

Cerchiara T, Abruzzo A, Parolin C et al. Microparticles based chitosan/ carboxymethylcellulose polyelectrolyte complexes for colon delivery of vancomycin. Carbohydr Polym 2016; 43: 124-130. https://doi.org/10.1016/j.carbpol.2016.02.020 DOI: https://doi.org/10.1016/j.carbpol.2016.02.020

Basta AH, El-Saied,H, Baraka AM, Lotfy VF. Performance of Carbon Xerogels in the Production of Environmentally Friendly Urea Formaldehyde‐Bagasse Composites, CLEAN-Soil, Air, Water 2017; 45 (6): 1600524. https://doi.org/10.1002/clen.201600524 DOI: https://doi.org/10.1002/clen.201600524

Basta AH, Lotfy VF, Hasanin MS, Trens P, El-Saied H. Efficient treatment of rice byproducts for preparing high-performance activated carbons. J Clean Prod 2019; 207: 284-295. https://doi.org/10.1016/j.jclepro.2018.09.216 DOI: https://doi.org/10.1016/j.jclepro.2018.09.216

Basta AH, Lotfy VF, Mahmoud K, Abdelwahed NAM. Synthesis and evaluation of protein-based biopolymer in production of silver nanoparticles as bioactive compound versus carbohydrates-based biopolymers. Royal Soc Open Sci 2020; 7 (10): 200928. https://doi.org/10.1098/rsos.200928 DOI: https://doi.org/10.1098/rsos.200928

Yang S, Wu X, Wang X, Samuelson LA, Cholli AL, Kumar J. Synthesis and Characterization of Fluorescent Cellulose. J Macromol Sci, Part A 2003; 40: 1275-1282. https://doi.org/10.1081/MA-120025307 DOI: https://doi.org/10.1081/MA-120025307

Boerstoel H, Maatman H, Westerink JB, Koenders BM. liquid crystalline solutions of cellulose in phosphoric acid. J polymer 2001; 42: 7371-7379. https://doi.org/10.1016/S0032-3861(01)00210-5

Iizuka E. Properties of liquid crystal of some polymers. J Adv Biophys 1988; 42: 1-56. https://doi.org/10.1016/0065-227X(88)90003-2 DOI: https://doi.org/10.1016/0065-227X(88)90003-2

de Gennes PG. Prost J The Physics of Liquid Crystals, 2nd edition ed., Clarendon Press 1995. https://doi.org/10.1063/1.2808028 DOI: https://doi.org/10.1063/1.2808028

Song J, Liu F, Han YY, Zheng YB, Preparation of cellulose liquid crystal solution and its application. J Tianjin Polytech Univ 2017; 36: 27-30.

Huang B, Ge JJ, Li Y, Hou H. Aliphatic acid esters of (2-hydroxypropyl)cellulose—Effect of side chain length on properties of cholesteric liquid crystals. J Polymer 2007; 48: 264-269. https://doi.org/10.1016/j.polymer.2006.11.033

Godinho MH, Gray DG, Pieranski P. Revisiting (hydroxypropyl) cellulose (HPC)/water liquid crystalline system. J Liquid Crystal 2017; 44: 1-13. https://doi.org/10.1080/02678292.2017.1325018

Tomizawa A, Mori Y, Kasuya N. Synthesis of novel and regioselectively mesogen-incorporated thermotropic liquid crystals from cellulose derivatives. J of Macromolecular Science, Part A 2017; 54: 860-866. https://doi.org/10.1080/10601325.2017.1339561 DOI: https://doi.org/10.1080/10601325.2017.1339561

Fukawa M, Suzuki K, Furum S. Disappearance of reflection color by Photo- polymerization of lyotropic cholesteric liquid Crystals from Cellulose Derivatives. J Photopolym Sci and Technol 2018; 31: 563-567. https://doi.org/10.2494/photopolymer.31.563 DOI: https://doi.org/10.2494/photopolymer.31.563

Vshivkov SA, Rusinova E. Effect of Component Nature on Liquid-Crystalline Transitions in Solutions of Cellulose Ethers. J Polymer Sci 2018; 60: 65-73. https://doi.org/10.1134/S0965545X18010078 DOI: https://doi.org/10.1134/S0965545X18010078

Chandrasekhar S, Sadashiva BK, Suresh KA. Liquid crystals of disc-like molecules. Pramana 1977; 9 (5): 471-480. https://doi.org/10.1007/BF02846252 DOI: https://doi.org/10.1007/BF02846252

Demus D, Stegemeyer H (Ed.), Topics in Physica Chemistry: Liquid Crystals. Steinkopff Verlag, Darmstadt, 1994.

Pelzl G, Diele S, Weissflog W. Banana-Shaped Compounds - A New Field of Liquid Crystals. Adv Mater 1999; 11 (9): 707-724. https://doi.org/10.1002/(SICI)1521-4095(199906)11:9<707::AID-ADMA707>3.0.CO;2-D DOI: https://doi.org/10.1002/(SICI)1521-4095(199906)11:9<707::AID-ADMA707>3.0.CO;2-D

Zimmermann H, Poupko R, Luz Z, Billard J. Pyramidic mesophases. Zeitschrift f¨ur Naturforschung Section a - J Phys Sci 1985; 40 (2): 149-160. https://doi.org/10.1515/zna-1985-0208 DOI: https://doi.org/10.1515/zna-1985-0208

Matsuo Y. C60 Derivatives Having Self-Assembly Capabilities. Fuller. Nanotub. Carbon Nanostr 1985; 18 (4-6): 338-352. https://doi.org/10.1080/1536383X.2010.487395 DOI: https://doi.org/10.1080/1536383X.2010.487395

Donald AM, Windle AH, Hanna S. Liquid Crystalline Polymers 2nd Edition. Cambridge University Press, Cambridge, 2006. https://doi.org/10.1017/CBO9780511616044 DOI: https://doi.org/10.1017/CBO9780511616044

Shibaev V. Liquid Crystalline Polymers. In: Saleem Hashmi (editor-in-chief), Reference Module in Materials Science and Materials Engineering. Oxford: Elsevier 2016; pp. 1-46. https://doi.org/10.1016/B978-0-12-803581-8.01301-1 DOI: https://doi.org/10.1016/B978-0-12-803581-8.01301-1

Dierking I, Al-Zangana S. Lyotropic liquid crystal phases from anisotropic nanomaterials. Nanomater 2017; 7: 305 (1-27). https://doi.org/10.3390/nano7100305 DOI: https://doi.org/10.3390/nano7100305

Friberg S. Lyotropic Liquid-Crystals - Preface. Adv Chem Ser 1976; R7-R7. https://doi.org/10.1021/ba-1976-0152 DOI: https://doi.org/10.1021/ba-1976-0152

Petrov AG. Liquid crystal physics and the physics of living matter. Mol Cryst Liq Cryst 1999; 332: 3087-3094. https://doi.org/10.1080/10587259908023804 DOI: https://doi.org/10.1080/10587259908023804

Collings PJ, Hird, M. Introduction to liquid crystals chemistry and physics. Taylor & Francis: London; Bristol, PA, p xi, 1997; p. 298. https://doi.org/10.4324/9780203211199 DOI: https://doi.org/10.4324/9780203211199

Kosa T, Sukhomlinova L, Su L, Taheri B, White TJ, Bunning TJ. Light-induced liquid crystallinity. Nature 2012; 485 (7398): 347-349. https://doi.org/10.1038/nature11122 DOI: https://doi.org/10.1038/nature11122

Dierking I. Chiral liquid crystal: Structures, Phases, Effects. Symmetry 2014; 6: 444-472. https://doi.org/10.3390/sym6020444 DOI: https://doi.org/10.3390/sym6020444

Shibaev PV, Chiappetta D, Sanford RL, Palffy-Muhoray P, Moreira M, Cao W, Green MM. Color Changing Cholesteric Polymer Films Sensitive to Amino Acids. Macromol 2006; 39 (12): 3986-3992. https://doi.org/10.1021/ma052046o DOI: https://doi.org/10.1021/ma052046o

Choi SS, Morris SM, Huck WTS, Coles HJ. The switching properties of chiral nematic liquid crystals using electrically commanded surfaces. Soft Matter 2009; 5 (2): 354-362. https://doi.org/10.1039/B810691F DOI: https://doi.org/10.1039/B810691F

Doganci E, Davarci D. Synthesized and mesomorphic properties of cholesterol end-cappedpoly(ε-caprolactone) polymers. J Polym Res 2019; 26: 165. https://doi.org/10.1007/s10965-019-1826-1 DOI: https://doi.org/10.1007/s10965-019-1826-1

Miyagi K, Teramoto Y. Elucidation of the Mechanism of Stress-Induced Circular Dichroic Inversion of Cellulosic/Polymer Liquid Crystalline Composites. Macromol 2020; 53 (8): 3250-3254. https://doi.org/10.1021/acs.macromol.9b02741 DOI: https://doi.org/10.1021/acs.macromol.9b02741

Ghosh T, Lehmann M. Recent advances in heterocycle-based metal-free calamitics. J Mater Chem C 2017; 5: 12308-12337. https://doi.org/10.1039/C7TC03502K DOI: https://doi.org/10.1039/C7TC03502K

Wang X, Li Z, Zhao H, Chen S. New azobenzene liquid crystal with dihydropyrazole heterocycle and photoisomerization studies. Royal Soc Open Sci 2020; 7: 200474. https://doi.org/10.1098/rsos.200474 DOI: https://doi.org/10.1098/rsos.200474

Bruce DW, Heyns K, Vill V. Vorlander’s wheel. Liq Cryst 1997; 23 (6): 813-819. https://doi.org/10.1080/026782997207740 DOI: https://doi.org/10.1080/026782997207740

Elliott A, Ambrose EJ. Evidence of chain folding in polypeptides and proteins. Discuss Faraday Soc 1950; 9: 246-251. https://doi.org/10.1039/df9500900246 DOI: https://doi.org/10.1039/df9500900246

Terbojevich M, Cosani A, Conio G, Marsano E, Bianchi E. Chitosan: chain rigidity and mesophase formation. Carbohydr Res1991; 209: 251-260. https://doi.org/10.1016/0008-6215(91)80161-F DOI: https://doi.org/10.1016/0008-6215(91)80161-F

Iftime MM, Irimiciuc SA, Agop M, Angheloiu M, Ochiuz L, Vasincu D. A theoretical multifractal model for assessing urea release from chitosan-based formulations. Polymers 2020; 12 (6): 1-13. https://doi.org/10.3390/polym12061264 DOI: https://doi.org/10.3390/polym12061264

Ailincai D, Marin L. Eco-friendly PDLC composites based on chitosan and cholesteryl acetate. J Mol Liq 2021; 321: 114466 (1-10). https://doi.org/10.1016/j.molliq.2020.114466 DOI: https://doi.org/10.1016/j.molliq.2020.114466

Strzelecka TE, Davidson MW, Rill RL. Multiple Liquid Crystal Phases of DNA at High Concentrations. Nature 1988; 331(6155): 457-460. https://doi.org/10.1038/331457a0 DOI: https://doi.org/10.1038/331457a0

Hamley IW. Liquid crystal phase formation by biopolymers. Soft Matter 2010; 6 (9): 1863-1871. https://doi.org/10.1039/b923942a DOI: https://doi.org/10.1039/b923942a

Flory PJ, Gordan M, Plate NA (Eds). Advances in Polymer Science: Liquid Crystal Polymers I. Springer-Verlag, Berlin, 1984.

Werbowyj RS, Gray DG. Liquid crystalline structure in aqueous hydroxypropyl cellulose solutions. Mol Cryst Liq Cryst 1976; 34: 97-103. https://doi.org/10.1080/15421407608083894 DOI: https://doi.org/10.1080/15421407608083894

Boerstoel H, Maatman H, Picken SJ, Remmers R, Westerink JB. Liquid crystalline solutions of cellulose acetate in phosphoric acid. Polymer 2001; 42: 7363-7369. https://doi.org/10.1016/S0032-3861(01)00209-9 DOI: https://doi.org/10.1016/S0032-3861(01)00209-9

Ritcey AM, Holme KR, Gray DG. Cholesteric Properties of Cellulose Acetate and Triacetate in Trifluoroacetic Acid. Macromol 1988; 21: 2914-2917. https://doi.org/10.1021/ma00188a003 DOI: https://doi.org/10.1021/ma00188a003

Yin Y, Nishinari K, Zhang H, Funami T. A Novel Liquid-Crystalline Phase in Dilute Aqueous Solutions of Methyl cellulose. Macromol. Rapid Commun 2006; 27: 971-975. https://doi.org/10.1002/marc.200600099 DOI: https://doi.org/10.1002/marc.200600099

Wang L, Wang X, Huang Y. Optical Properties of Ethyl-Cyanoethyl Cellulose / Poly (acrylic acid) Cholesteric Liquid Crystalline Composite Films. Journal of Appl Polym Sci 2004; 92: 213-217. https://doi.org/10.1002/app.13433 DOI: https://doi.org/10.1002/app.13433

Boerstoel H, Maatman H, Westerink JB, Koenders BM. Liquid crystalline solutions of cellulose in phosphoric acid. Polymer 2001; 42: 7371-7379. https://doi.org/10.1016/S0032-3861(01)00210-5 DOI: https://doi.org/10.1016/S0032-3861(01)00210-5

Gray DG. Chiral nematic ordering of polysaccharides. Carbohydr Polym 1994; 25 (4): 277-284. https://doi.org/10.1016/0144-8617(94)90053-1 DOI: https://doi.org/10.1016/0144-8617(94)90053-1

Shimamura K. White JL, Fellers JF. Hydroxy propyl cellulose, a thermotropic liquid crystal: Characteristics and structure development in continuous extrusion and melt spinning. Appl Polym Sci 1981; 26: 2165-2180. https://doi.org/10.1002/app.1981.070260705 DOI: https://doi.org/10.1002/app.1981.070260705

Godinho MH, Gray DG, Pieranski P, Revisiting (hydroxypropyl) cellulose (HPC)/water liquid crystalline system. Liq Cryst 2017; 44(12): 1-13. https://doi.org/10.1080/02678292.2017.1325018 DOI: https://doi.org/10.1080/02678292.2017.1325018

Zugenmaier P. In: Handbook of Liquid Crystals, D. Demus, J. Goodby GW, Gray HW, Spiess and V. Vill (eds.), Wiley-VCH, Weinheim, 1989; Vol. 3: pp. 453.

Gilbert RD, Patton PA. Liquid crystal formation in cellulose and cellulose derivatives. Prog Polym Sci 1983; 9 (2-3): 115-131. https://doi.org/10.1016/0079-6700(83)90001-1 DOI: https://doi.org/10.1016/0079-6700(83)90001-1

Bheda J, Fellers J F, White JL, Phase behavior and structure of liquid crystalline solutions of cellulose derivatives. Colloid Polym Sci 1980; 258: 1335-1342. https://doi.org/10.1007/BF01668781

Fukawa M, Kawaguchi A, Hayata K, Aoki R, Furukawa M, Furumi S. Syntheses, and properties of cellulosic derivatives for reflection color films. J Photopolym Sci Technol 2019; 32(4): 633-637. https://doi.org/10.2494/photopolymer.32.633 DOI: https://doi.org/10.2494/photopolymer.32.633

Aharoni SM. Rigid Backbone Polymers, XIII: Effects of the Nature of the Solvent on the Lyotropic Mesomorphicity of Cellulose Acetate. Mol Cryst Liq Cryst 1980; 56: 237-241. https://doi.org/10.1080/01406568008070497 DOI: https://doi.org/10.1080/01406568008070497

Charlet G, Gray DG. Solid Cholesteric Films Cast from Aqueous. Macromol 1987; 20 (1): 33-38. https://doi.org/10.1021/ma00167a007 DOI: https://doi.org/10.1021/ma00167a007

Chiba R, Nishio Y, Sato Y, Ohtaki M, Miyashita Y. Preparation of cholesteric (hydroxypropyl)cellulose/polymer networks and ion-mediated control of their optical properties. Biomacromol 2006; 7(11): 3076-3082. https://doi.org/10.1021/bm060567t DOI: https://doi.org/10.1021/bm060567t

Zhang Q, Qian L, Wang L, Stuto S, Shen, C. Study of casting self-colored liquid crystalline solid films of hydroxy propyl cellulose. Appl Mechan Mater 2013; 341-342: 217-220. https://doi.org/10.4028/www.scientific.net/AMM.341-342.217 DOI: https://doi.org/10.4028/www.scientific.net/AMM.341-342.217

Yamagishi T, Fukuda T, Miyamoto T, Watanabe J. Thermotropic cellulose derivatives with flexible substituents. II. Effect of substituents on thermal properties. Polym Bull 1988; 20 (4): 373-377. https://doi.org/10.1007/BF00255739 DOI: https://doi.org/10.1007/BF00255739

Yamagishi T, Fukuda T, Miyamoto T, Yakoh Y, Takashina Y, Watanabe J. Thermotropic cellulose derivatives with flexible substituents. IV. Columnar liquid crystals from ester-type derivative of cellulose. Liq Cryst 1991; 10(4): 467-473. https://doi.org/10.1080/02678299108036436 DOI: https://doi.org/10.1080/02678299108036436

Mitchell GR, Guo W, Davis FJ. Liquid crystal elastomers ba-sed upon cellulose derivatives. Polymer 1992; 33 (1): 68-74. https://doi.org/10.1016/0032-3861(92)90561-A DOI: https://doi.org/10.1016/0032-3861(92)90561-A

Ishii D, Ueda K, Stroeve P, Nakaoki T, Hayashi H. Transport Properties of Chemically Crosslinked Hydroxypropyl Cellulose in Solvated State. Cellul Chem Technol 2016; 50(7-8): 755-760.

Huang B, Ge JJ, Li Y, Hou H. Aliphatic acid esters of (2-hydroxypropyl) cellulose-Effect of side chain length on properties of cholesteric liquid crystals. Polymer 2007; 48 (1): 264-269. https://doi.org/10.1016/j.polymer.2006.11.033 DOI: https://doi.org/10.1016/j.polymer.2006.11.033

Hayata K, Furumi S. Side chain effect of hydroxypropyl cellulose derivatives on reflection properties. Polymers 2019; 11 (10): 1-8. https://doi.org/10.3390/polym11101696 DOI: https://doi.org/10.3390/polym11101696

Bilbao-Sainz C, Bras J, Williams T, Sénechal T, Orts W. HPMC reinforced with different cellulose nano-particles. Carbohydr Polym 2011; 86 (4): 1549-1557. https://doi.org/10.1016/j.carbpol.2011.06.060 DOI: https://doi.org/10.1016/j.carbpol.2011.06.060

Ma L, Wang L, Wu L, Zhuo D, Weng Z, Ren R. Cellulosic nano composite membranes from hydroxypropyl cellulose reinforced by cellulose nanocrystals. Cellulose 2014; 2 (6): 4443-4454. https://doi.org/10.1007/s10570-014-0405-1 DOI: https://doi.org/10.1007/s10570-014-0405-1

Walters CM, Boott CE, Nguyen, T-D, Hamad WY, MacLachlan MJ. Iridescent Cellulose Nanocrystal Films Modified with Hydroxypropyl Cellulose. Biomacromol 2020; 21: 1295-1302. https://doi.org/10.1021/acs.biomac.0c00056 DOI: https://doi.org/10.1021/acs.biomac.0c00056

Moon RJ, Martini A, Nairn J, Youngblood J, Martini A, Nairn J. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 2011; 40: 3941-3994. https://doi.org/10.1039/c0cs00108b DOI: https://doi.org/10.1039/c0cs00108b

Nandi S, Guha P.A Review on Preparation and Properties of Cellulose Nanocrystal-Incorporated Natural Biopolymer. J Packag Technol Res 2018; 2 (2): 149-166. https://doi.org/10.1007/s41783-018-0036-3 DOI: https://doi.org/10.1007/s41783-018-0036-3

Khatoon N, Ramezani O, Kermanian H. Production of Nanocrystalline Cellulose from Sugarcane Bagasse, 4th Int. Conf. Nanostr, 12-14, 2012.

Arai K, Horikawa Y, Shikata T. Transport Properties of Commercial Cellulose Nanocrystals in Aqueous Suspension Prepared from Chemical Pulp via Sulfuric Acid Hydrolysis. J ACS Omega 2018; 3: 13944-13951. https://doi.org/10.1021/acsomega.8b01760 DOI: https://doi.org/10.1021/acsomega.8b01760

Myja D, Loranger É, Lanouette R. TEMPO Mediated Oxidation Optimization on Thermo mechanical Pulp for Paper Reinforcement and Nanomaterial Film Production. BioResources 2018; 13 (2): 4075-4092. https://doi.org/10.15376/biores.13.2.4075-4092 DOI: https://doi.org/10.15376/biores.13.2.4075-4092

Deckers C, Linden M, Löwe H. Nitroxyl Radical-Mediated Oxidation of Alcohols in Continuous Microreactors. Chem Eng Techno 2019; 42 (10): 2044-2051. https://doi.org/10.1002/ceat.201800427 DOI: https://doi.org/10.1002/ceat.201800427

Zhu JY, Sabo R, Luo X. Integrated production of nano-fibrillated cellulose and cellulosic biofuel (ethanol) by enzymatic fractionation of wood fibers. Green Chem 2011; 13: 1339-1344. https://doi.org/10.1039/c1gc15103g DOI: https://doi.org/10.1039/c1gc15103g

Ribeiro RSA Pohlmann BC, Calado V, Bojorge N, Pereira N. Production of nanocellulose by enzymatic hydrolysis: Trends and challenges. Eng Life Sci 2019; 19: 279-291. https://doi.org/10.1002/elsc.201800158 DOI: https://doi.org/10.1002/elsc.201800158

Durán N, Lemes AP, Durán M, Freer J, Baeza J. A mini review of cellulose nanocrystals and its potential integration as co-product in bioethanol production. J Chil Chem Soc 2011; 56: 672-677. https://doi.org/10.4067/S0717-97072011000200011 DOI: https://doi.org/10.4067/S0717-97072011000200011

Chen Y, Wu Q, Ai X, Huang M, Lu Q. Sono-chemical preparation of cellulose nanowhiskers from luffa cylindrica fibers optimized by response surface methodology. Cellul Chem Technol 2017; 51: 775-783.

Mascheroni E, Rampazzo R, Ortenzi MA, Piva G, Bonetti S, Piergiovanni L. Comparison of cellulose nanocrystals obtained by sulfuric acid hydrolysis and ammonium persulfate, to be used as coating on flexible food-packaging materials. Cellulose 2016; 23: 779-793. https://doi.org/10.1007/s10570-015-0853-2 DOI: https://doi.org/10.1007/s10570-015-0853-2

Filipova I, Fridrihsone V, Cabulis U, Berzins A. Synthesis of nanofibrillated cellulose by combined ammonium persulphate treatment with ultrasound and mechanical processing. Nanomater 2018; 8: 2-11. https://doi.org/10.3390/nano8090640 DOI: https://doi.org/10.3390/nano8090640

Marchessault RH, Morehead FF, Koch MJ. Some hydrodynamic properties of neutral suspensions of cellulose crystallites as related to size and shape. J Colloid Sci 1961; 16: 327-344. https://doi.org/10.1016/0095-8522(61)90033-2 DOI: https://doi.org/10.1016/0095-8522(61)90033-2

Shafiei-Sabet S, Hamad WY, Hatzikiriakos SG. Influence of Degree of Sulfation on the Rheology of Cellulose Nanocrystal Suspensions. Rheol Acta 2013; 52: 741-751. https://doi.org/10.1007/s00397-013-0722-6 DOI: https://doi.org/10.1007/s00397-013-0722-6

Wagberg L, Winter L, Odberg L, Lindstom T. On the charge stoichiometry upon adsorption of a cationic polyelectrolyte on cellulosic materials. Colloids Surf 1987; 27: 163-173. https://doi.org/10.1016/0166-6622(87)80335-9 DOI: https://doi.org/10.1016/0166-6622(87)80140-3

Araki J, Wada M, Kuga S, Okano T. Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose. Colloids and Surfaces, A: Physicochem Eng Aspects 1998; 142 (1): 75-82. https://doi.org/10.1016/S0927-7757(98)00404-X DOI: https://doi.org/10.1016/S0927-7757(98)00404-X

Araki J, Wada M, Kuga S, Okano T. Birefringent glassy phase of a cellulose microcrystal suspension. Langmuir 2000; 16 (6): 2413-2415. https://doi.org/10.1021/la9911180 DOI: https://doi.org/10.1021/la9911180

Revol JF, Bradford H, Giasson J, Marchessault RH, Gray DG. Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int J Biolog Macromol 1992; 14: 170-172. https://doi.org/10.1016/S0141-8130(05)80008-X DOI: https://doi.org/10.1016/S0141-8130(05)80008-X

Dong XM, Revol JF, Gray DG. Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose 1998; 5: 19-32. https://doi.org/10.1023/A:1009260511939 DOI: https://doi.org/10.1023/A:1009260511939

Morais JPS, Rosa MDF, De Souza Filho MDSM, Nascimento LD, Do Nascimento DM, Cassales AR. Extraction and characterization of nanocellulose structures from raw cotton linter. Carbohydr Polym 2013; 91: 229-235. https://doi.org/10.1016/j.carbpol.2012.08.010 DOI: https://doi.org/10.1016/j.carbpol.2012.08.010

Canilha L, Chandel AK, Suzane Dos Santos Milessi T, Antunes FAF, Luiz Da Costa Freitas W, Das Graças Almeida Felipe M, Da Silva SS. Bioconversion of sugarcane biomass into ethanol: An overview about composition, pretreatment methods, detoxification of hydrolysates, enzymatic saccharification, and ethanol fermentation. J Biomed Biotechnol 2012; 2012, Article ID 989572 (1-15). https://doi.org/10.1155/2012/989572 DOI: https://doi.org/10.1155/2012/989572

De Sousa MM, Vianna A, De Carvalho N, Silva DDJ. Cellulose Nanocrystal Production Focusing on Cellulosic Material Pre-Treatment and acid hydrolysis time, Artig. TÉCNICO / Tech. Artic 2019; 80: 59-66.

Beck-Candanedo S, Roman M, Gray DG. Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromol 2005; 6: 1048-1054. https://doi.org/10.1021/bm049300p DOI: https://doi.org/10.1021/bm049300p

Urena-Benavides EE, Ao G, Davis VA, Kitchens CL. Rheology, and phase behavior of lyotropic cellulose nanocrystal suspensions. Macromol 2011; 44: 8990-8998. https://doi.org/10.1021/ma201649f DOI: https://doi.org/10.1021/ma201649f

Onasager L. The effect of shape on the interaction of colloidal paticles. Ann N Y Acad Sci 1949; 51 (4): 627-659. https://doi.org/10.1111/j.1749-6632.1949.tb27296.x DOI: https://doi.org/10.1111/j.1749-6632.1949.tb27296.x

Hamad WY, Hu TQ. Structure process yield interrelation in nanocrystalline cellulose extraction. Can J Chem Eng 2010; 88 (3): 392-402. https://doi.org/10.1002/cjce.20298 DOI: https://doi.org/10.1002/cjce.20298

Kelly JA, Shopsowitz KE, Ahn JM, Hamad WY, MacLachlan MJ. Chiral nematic stained glass: Controlling the optical properties of nanocrystalline cellulose-templated materials. Langmuir 2012; 28 (50): 17256-17262. https://doi.org/10.1021/la3041902 DOI: https://doi.org/10.1021/la3041902

Schlesinger M, Giese M, Blusch LK, Hamad WY, Maclachlan MJ. Chiral nematic cellulose-gold nanoparticle composites from mesoporous photonic cellulose. Chem Commun 2015; 51(3): 530-533. https://doi.org/10.1039/C4CC07596J DOI: https://doi.org/10.1039/C4CC07596J

Lizundia E, Nguyen TD, Vilas JL, Hamad WY, Maclachlan MJ. Chiroptical luminescent nanostructured cellulose films. Mater Chem Front 2017; 1(5): 979-987. https://doi.org/10.1039/C6QM00225K DOI: https://doi.org/10.1039/C6QM00225K

Leung ACW, Hrapovic S, Lam E, Liu Y, Male HB, Mahmoud KA, Luong JHT. Characteristics and properties of carboxylated cellulose nanocrystals prepared form a novel one-step procedure. Nano Macro Small 2011; 7: 302-305. https://doi.org/10.1002/smll.201001715 DOI: https://doi.org/10.1002/smll.201001715

Waldemer RH, Tratnyek PG, Johnson RL, Nurmi AJ. Oxidation of Chlorinated Ethenes by Heat-Activated Persulfate: Kinetics and Products. Env Sci Technol 2007; 41: 1010-1015. https://doi.org/10.1021/es062237m DOI: https://doi.org/10.1021/es062237m

Castro-Guerrero CF, Gray DG. Chiral nematic phase formation by aqueous suspensions of cellulose nanocrystals prepared by oxidation with ammonium persulfate. Cellulose 2014; 21: 2567-2577. https://doi.org/10.1007/s10570-014-0308-1 DOI: https://doi.org/10.1007/s10570-014-0308-1

Rampazzo R. Alkan D, Gazzotti S, Ortenzi MA, Piva G, Piergiovanni L. Cellulose Nanocrystals form lignocelllosics Raw materials, for oxygen barrier coatings on food packaging films. Packag Technol Sci 2017; 30: 645-661. https://doi.org/10.1002/pts.2308 DOI: https://doi.org/10.1002/pts.2308

Turbak AF, Snyder FW, Sandberg KR. Micro fibrillared cellulose, a new cellulose product. Properties, uses and commercial potential. J Appl Polym Sci Symp 1983; 37: 797-813.

Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindström T. Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromol 2007; 8: 1934-1941. https://doi.org/10.1021/bm061215p DOI: https://doi.org/10.1021/bm061215p

Pawlowski WP, Gilbert RD, Formes RE, Purrington,ST. The thermotropic and lyotropic liquid-crystalline properties of acetoacetoxypropyl cellulose. J Polym Sci Pt B Polym Phys 1987; 25: 2293-2301. https://doi.org/10.1002/polb.1987.090251107 DOI: https://doi.org/10.1002/polb.1987.090251107

Hsiao BS, Stein RS, Deutscher K, Winter HH. Optical anisotropy of a thermotropic liquid-crystalline polymer in transient shear. J Polym Sci Pt B Polym Phys 1990; 28: 1571-1588. https://doi.org/10.1002/polb.1990.090280912 DOI: https://doi.org/10.1002/polb.1990.090280912

Demus D, Richter L. Texture of liquid crystals, Verlag Chemie, Weinheim. New York, 1978.

Dierking I. Textures of liquid crystals, Wiley-VCH, Weinheim, New York, 1990.

Piorkowska E, Rutledge GC. Handbook of Polymer Crystallization. Wiley-Vch Verlag GmbH & Co., 2013; p. 489. ISBN: 978-0-470-38023-9 498 Pages.

Ohlendorf P, Greine A. Synthesis of liquid crystalline thioether- functionalized hydroxypropyl cellulose esters. Polym Chem 2015; 6: 2734-2739. https://doi.org/10.1039/C4PY01709A DOI: https://doi.org/10.1039/C4PY01709A

Sackmann H, Demus D. The problems of polymorphism in liquid crystals. Mol Cryst Liq Cryst 1973; 21: 239-273. https://doi.org/10.1080/15421407308083321 DOI: https://doi.org/10.1080/15421407308083321

Demus D, Stegemeyer H (Eds). Topics in Physical Chemistry: Liquid Crystals. Steinkopff Verlag, Darmstadt, 1994.

Dayan S, Gilli JM, Sixou P. Rheological studies of cellulose derivatives solutions 1983; 28: 1527-1534. https://doi.org/10.1002/app.1983.070280424

Dai Q, Khan SA, Kadla JF. Transient rheological behavior of lyotropic (acetyl) (ethyl)cellulose/m-cresol solutions. Cellulose 2006; 13: 213-223. https://doi.org/10.1007/s10570-005-9027-y DOI: https://doi.org/10.1007/s10570-005-9027-y

Papkov SP, Kulichikhin VG, Kalmykova VD, Malkin AY. Rheological properties of anisotropic poly (para-benzamide) solutions. J Polym Sci Polym Phys Ed 1974; 12 (9): 1753-1770. https://doi.org/10.1002/pol.1974.180120903 DOI: https://doi.org/10.1002/pol.1974.180120903

Grinshpan DD, Tret S M, Tsygankova NG, Makarevich SE. Savitskaya TA. Rheological studies of the high- concentration cellulose sulphate- acetate solutions. J Eng Phys Thermophys 2005; 78 (5): 41-47. https://doi.org/10.1007/s10891-006-0007-3 DOI: https://doi.org/10.1007/s10891-006-0007-3

Grinshpan DD, Savitskaya TA, Tsygankova NG, Makarevich SE, Tretsiakova S M, Nevar TN. Cellulose acetate sulfate as a lyotropic liquid crystalline polyelectrolyte: Synthesis, properties, and application. Int J Polym Sci 2010; 2010: Article ID 831658. https://doi.org/10.1155/2010/831658 DOI: https://doi.org/10.1155/2010/831658

Basta AH, Lotfy VF, Micky JA, Salem AM. Liquid crystal behavior of cellulose nanoparticles-ethyl cellulose composites: Preparation, characterization, and rheology. J Appl Polym Sci 2021; 138(12): 50067. https://doi.org/10.1002/app.50067 DOI: https://doi.org/10.1002/app.50067

Basta AH, Lotfy VF, Micky JA. Salem AM. Hydroxypropylcellulose-Based Liquid Crystal Materials. Carbohydr Polym Technol Appl 2021; 2: 100103. https://doi.org/10.1016/j.carpta.2021.100103 DOI: https://doi.org/10.1016/j.carpta.2021.100103

Dayan S, Gilli MJ, Sixou P. Rheological studies of cellulose derivatives solutions. J Appl Polym Sci 1983; 28 (4): 1527-1534. https://doi.org/10.1002/app.1983.070280424 DOI: https://doi.org/10.1002/app.1983.070280424

Bheda J, Fellers JF, White J. Phase behavior and structure of liquid crystalline solutions of cellulose derivatives. Colloid Polym Sci 1980; 258: 1335-1342. https://doi.org/10.1007/BF01668781 DOI: https://doi.org/10.1007/BF01668781

Downloads

Published

2021-11-29

How to Cite

Basta, A. H., Lotfy, V. F., Micky, J. A., & Salem, A. M. (2021). Cellulose Ether-Based Liquid Crystal Materials: Review Article. Journal of Research Updates in Polymer Science, 10, 69–83. https://doi.org/10.6000/1929-5995.2021.10.9

Issue

Section

Articles