Ion Transport through C-butyl-pyrogallol[4]arene-loaded Poly(Vinyl Chloride) Membranes

Authors

  • Silvânia Marilene de Lima Koller Insituto Nacional de Propriedade Industrial, rua Mayrnk Veiga, 9 Rio de Janeiro, R.J. CEP: 20090-910, Brazil
  • Henrique Dias Correia Etec Angelo Cavalheiro, Av. José Correia Filho, 750, Serrana, S.P. CEP: 14150-000, Brazil
  • Tiago Mateus Bezerra Teodósio E.E. Adalberto Nascimento, R. Adalberto Maia, 235, Campinas, SP. CEP: 13076-015, Brazil
  • Thiago de Souza Cavallini Universidade de São Paulo, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Ribeirão Preto, SP. CEP: 14040-901, Brazil
  • Grégoire Jean-François Demets Universidade de São Paulo, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Ribeirão Preto, SP. CEP: 14040-901, Brazil https://orcid.org/0000-0001-7152-1266

DOI:

https://doi.org/10.6000/1929-5995.2021.10.11

Keywords:

Pyrogallol[4]arenes, semipermeable membranes, ionophore, electrochemistry, P.V.C

Abstract

The present paper studies the natural diffusion and migration of monovalent aqueous ions through pyrogallol[4]arene cavitand-loaded poly(vinyl chloride) solid-state membranes exposed to concentration gradients, and electric fields using electrodes coated with such membranes. We have observed that ion flux through these semipermeable membranes is directly proportional to the amount of macrocycle they contain. Ion size, in this particular case, is not the most important factor to limit ion flux, but solvation numbers and energies seem to play a much more important role in the whole process.

References

Kovalev IV, Mal'bakhova IA, Vorob'ev AM, Borisenko TA, Popov MP, Matvienko AA, Titkov AI, Nemudryi AP. Microtube Membranes for the Selective Synthesis of Oxygen and Hydrogen. Russ J Electrochem 2021; 10: 1019-27. https://doi.org/10.1134/S1023193521100074 DOI: https://doi.org/10.1134/S1023193521100074

Huang T, Alyami MZ, Kashab, NM, Nunes SP. Engineering membranes with macrocycles for precise molecular separations. J Mater Chem A 2021; 9(34): 18102-28. https://doi.org/10.1039/D1TA02982G DOI: https://doi.org/10.1039/D1TA02982G

Kim JP, Choi E, Kang J, Choi SE, Choi Y, Kwon O, Kim DW. Ultrafast H2-selective nanoporous multilayer graphene membrane prepared by confined thermal annealing. Chem Commun 2021; 57(70): 8730-3. https://doi.org/10.1039/D1CC02946K DOI: https://doi.org/10.1039/D1CC02946K

Han S, Ibrahim MYS, Abolhasani M. Intensified recovery of switchable hydrophilicity solvents in flow. Chem Commun 2021; 57(86): 11310-3. https://doi.org/10.1039/D1CC03819B DOI: https://doi.org/10.1039/D1CC03819B

Jiang S, Hagesteijn KFL, Ni J, Ladewig BP. A scientometric study of the research on ion exchange membranes. RSC Adv 2018; 8(42): 24036-48. https://doi.org/10.1039/C8RA04686G DOI: https://doi.org/10.1039/C8RA04686G

Nagels LJ, Bazylak G, Zielinska D, Designing potentiometric sensor materials for the determination of organic ionizable substances in HPLC. Electroanal 2003; 15 (5-6): 533-8. https://doi.org/10.1002/elan.200390065 DOI: https://doi.org/10.1002/elan.200390065

Lukyanenko NG, Tltova NY, Karpmchlk S, Melnrk T, Sodium-selective electrodes based on PVC membranes containing bis[(3n2 + 1)-crown-n] ether derivatives. Anal Chim Acta 1992; 259: 145-58. https://doi.org/10.1016/0003-2670(92)85087-M DOI: https://doi.org/10.1016/0003-2670(92)85087-M

Ryba O, Petránek J, Interference of permeable anions in 21 potassium-sensitive membrane electrodes based on valinomycin and dimethyldibenzo-30-crown-10. J Electroanal Chem 1976; 67: 321-33. https://doi.org/10.1016/S0022-0728(76)80048-4 DOI: https://doi.org/10.1016/S0022-0728(76)80048-4

Crawley CD, Rechnitz CA, Electrochemical studies on ion-selective polymer membrane electrodes. J Membr Sci 1985; 24: 201-19. https://doi.org/10.1016/S0376-7388(00)80147-7 DOI: https://doi.org/10.1016/S0376-7388(00)80147-7

Teodosio MB, Cavallini TS, Demets GJF, Correia HD, inventors; University of São Paulo, assignee. Semipermeable materials for nanofiltration of macromolecules, water purification, glycerol, ethanol, emulsions, pigment ink, gases and liquids, comprises cucurbit uril or hemi-cucurbit uril and solid matrix. Brazilian Patent BR201002556-A2. 2010.

de Lima SM, Demets GJF, inventors; University of São Paulo, assignee. Polymer-based semipermeable membrane containing dispersed pyrogallolarenes and resorcinarenes, and its production process. Brazilian Patent BR1020130131970. 2013.

Högberg AGS, Two stereoisomeric macrocyclic resorcinol-acetaldehyde condensation products. J Org Chem 1980; 45 (22): 4498-500. https://doi.org/10.1021/jo01310a046 DOI: https://doi.org/10.1021/jo01310a046

Bruno B, Flaria D, Laura N, Fabiola S, Valbuena LZ, Giovanni Z, Caterina F, Maurizio S, Andrea T, Fabiana C, Jochen LMCM, Bis(diamido)-bridged basket resorcin[4]arenes as enantioselective receptors for amino acids and amines. Eur J Org Chem 2007; (36): 5995-6002. https://doi.org/10.1002/ejoc.200700829 DOI: https://doi.org/10.1002/ejoc.200700829

Evan-Salem T, Baruch I, Avram L, Cohen Y, Palmer LC, Rebek. Jr. J, Resorcinarenes are hexameric capsules in solution, Proc Nat Acad Sci 2006; 103: 12296-300. https://doi.org/10.1073/pnas.0604757103 DOI: https://doi.org/10.1073/pnas.0604757103

Atwood JL, Barbour LJ, Jerga A, Hydrogen-bonded molecular capsules are stable in polar media. Chem Commun 2001; 2376-7. https://doi.org/10.1039/b106250f DOI: https://doi.org/10.1039/b106250f

Atwood JL, Barbour LJ, Jerga A, On the synthesis and structure of the very large spherical capsules derived from hexamers of pyrogallol[4]arenes. J Supramol Chem 2001; 1 (3): 131-4. https://doi.org/10.1016/S1472-7862(02)00003-5 DOI: https://doi.org/10.1016/S1472-7862(02)00003-5

MacGillivray LR, Atwood JL, A chiral spherical molecular assembly held together by 60 hydrogen bonds. Nature 1997; 389: 469-72. https://doi.org/10.1038/38985 DOI: https://doi.org/10.1038/38985

Beyeh NK, Kogej M, Ahman A, Rissanen K, Schalley CA, Flying capsules: mass spectrometric detection of pyrogallolarene and resorcinarene hexamers, Angew Chem Int Ed Engl 2006; 45: 5214-8. https://doi.org/10.1002/anie.200600687 DOI: https://doi.org/10.1002/anie.200600687

Barrett ES, Dale TJ, Rebek Jr J, Stability, dynamics, and selectivity in the assembly of hydrogen-bonded hexameric capsules. J Am Chem Soc 2008; 130: 2344-50. https://doi.org/10.1021/ja078009p DOI: https://doi.org/10.1021/ja078009p

Yamanaka M, Shivanyuk A, Rebek Jr J, Kinetics and thermodynamics of hexameric capsule formation. J Am Chem Soc 2004; 126: 2939-43. https://doi.org/10.1021/ja037035u DOI: https://doi.org/10.1021/ja037035u

Schnatwinkel B, Rekharsky MV, Brodbeck R, Borovkov VV, Inoue Y, Mattay J, Thermodynamic aspects of the host guest chemistry of pyrogallol[4]arenes and peralkylated ammonium cations. Tetrahedron 2009; 65 (13): 2711-5. https://doi.org/10.1016/j.tet.2009.01.066 DOI: https://doi.org/10.1016/j.tet.2009.01.066

Shivanyuk A, Rebek Jr J, Reversible encapsulation by self-assembling resorcinarene subunits. Proc Natl Acad Sci U. S. A. 2001; 98: 7662-5. https://doi.org/10.1073/pnas.141226898 DOI: https://doi.org/10.1073/pnas.141226898

Shivanyuk A, Rebek. Jr. J, Reversible encapsulation of multiple, neutral guests in hexameric resorcinarene hosts. Chemical Commun 2001; 2424-5. https://doi.org/10.1039/b109464p DOI: https://doi.org/10.1039/b109464p

Schnatwinkel B, Rekharsky MV, Borovkov VV, Inoue Y, Mattay J, Pyrogallol[4]arenes as artificial receptors for l-carnitine. Tetrahedron Lett 2009; 50 (13): 1374-6. https://doi.org/10.1016/j.tetlet.2008.10.108 DOI: https://doi.org/10.1016/j.tetlet.2008.10.108

Wirtheim E, Avram L, Cohen Y, Thio-ether-footed resorcin[4]arenes: self-assembly in solution and interaction with gold nanoparticles as viewed by diffusion NMR. Tetrahedron 2009; 65 (35): 7268-76. https://doi.org/10.1016/j.tet.2009.02.083 DOI: https://doi.org/10.1016/j.tet.2009.02.083

Fowler DA, Tian J, Barnes C, Teat SJ, Atwood JL, Cocrystallization of c-butyl pyrogallol[4]arene and c-propan-3-ol pyrogallol[4]arene with gabapentin. Crystal Struct. Commun 2011; 13 (5): 1446-9. https://doi.org/10.1039/C0CE00661K DOI: https://doi.org/10.1039/C0CE00661K

Correia HD, Demets GJF, Cucurbit[6]uril/PVC-based semipermeable membranes as electrode modifiers for electrochemical investigation of insoluble substrates, Electrochem. Commun. 2009; 11: 1928-31. https://doi.org/10.1016/j.elecom.2009.08.018 DOI: https://doi.org/10.1016/j.elecom.2009.08.018

Gerkensmeier T, Iwanek W, Agena C, Fröhlich R, Kotila S,Näther C, Mattay J, Self-assembly of 2,8,14,20-tetraisobutyl-5, 11, 17, 23-tetrahydroxyresorc [4] arene. Eur J Org Chem 1999: 2257-62. https://doi.org/10.1002/(SICI)1099-0690(199909)1999:9<2257::AID-EJOC2257>3.0.CO;2-H DOI: https://doi.org/10.1002/(SICI)1099-0690(199909)1999:9<2257::AID-EJOC2257>3.0.CO;2-H

Teodósio TMB, de S. Cavallini T, Jardim LV, Demets GJF, Montagem de uma célula universal para ensaios de permeação em membranas semipermeáveis sólidas em escala laboratorial. Orbital Elec J Chem Campo Grande 2011; 3: 204-11.

Kitamura M, Yamashita K, Imai H, Studies on the Electrode Processes of Oxovanadium(IV). II. Electrolytic Reduction of Vanadyl Acetylacetonate in Acetonitrile Solution at Mercury Electrode. Bull Chem Soc Jpn 1976; 49(1): 97-100. https://doi.org/10.1246/bcsj.49.97 DOI: https://doi.org/10.1246/bcsj.49.97

Riechel TL, Sawyer DT. Electrochemical Studies of Vanadium(III),-(IV), and-(V) Complexes of 8-Quinolinol in Acetonitrile. Formation of a Binuclear Mixed-Valence (IV,V) Complex. Inorg Chem 1975; 14(8): 1869-75. https://doi.org/10.1021/ic50150a028 DOI: https://doi.org/10.1021/ic50150a028

Downloads

Published

2021-12-10

How to Cite

de Lima Koller, S. M. ., Correia, H. D., Teodósio, T. M. B., Cavallini, T. de S., & Demets, G. J.-F. (2021). Ion Transport through C-butyl-pyrogallol[4]arene-loaded Poly(Vinyl Chloride) Membranes. Journal of Research Updates in Polymer Science, 10, 92–100. https://doi.org/10.6000/1929-5995.2021.10.11

Issue

Section

Articles