Fatigue and Failure Analysis of Sandwich Composites using Two Types of Cross-Ply Glass Fibers Laminates and Epoxy Resin

Authors

  • João Pedro Monteiro Cheloni LabMA – Advanced Manufacturing Laboratory, University of Campinas, Mechanical Engineering Department, Campinas, SP, Brazil https://orcid.org/0000-0001-6568-2426
  • Marcio Eduardo Silveira CITeC - Center of Technological Innovation on Composite Materials, Federal University of São João Del Rei-UFSJ, Mechanical Engineering Department, São João Del Rei, MG, Brazil
  • Eder Sócrates Najar Lopes LabMA – Advanced Manufacturing Laboratory, University of Campinas, Mechanical Engineering Department, Campinas, SP, Brazil
  • Leandro José da Silva CITeC - Center of Technological Innovation on Composite Materials, Federal University of São João Del Rei-UFSJ, Mechanical Engineering Department, São João Del Rei, MG, Brazil

DOI:

https://doi.org/10.6000/1929-5995.2022.11.06

Keywords:

Sandwich composite, bending fatigue, stiffness degradation, failure modes

Abstract

Sandwich structures have become effective structural elements for engineering applications due to their good design flexibility. Understanding the material behavior under static and dynamic loads, as well as the failure mechanisms of these sandwich structures, is of great importance. This work evaluates the fatigue and static bending behavior of epoxy resin specimens and sandwich composites composed of an epoxy resin core with glass fiber laminated faces. The fatigue life, failure modes, and stiffness degradation of these specimens are determined experimentally. The specimens were cycled under constant amplitude and monitored by a data acquisition system that allowed continuous data collection. Three stages of failure were identified using microscope analyses and stiffness degradation curves. In the case of an imposed displacement of 2 mm, the sandwich structures were shown to have a significantly lower fatigue life than the epoxy resin specimens.

References

Ferdous W, Manalo A, Aravinthan T. Bond behavior of composites sandwich panel and epoxy polymer matrix: Taguchi design of experiments and theoretical predictions. Construction and Building Materials 2017; 145: 76-87. https://doi.org/10.1016/j.conbuildmat.2017.03.244 DOI: https://doi.org/10.1016/j.conbuildmat.2017.03.244

Campbell FC. Elements of Metallurgy and Engineering Alloys, ASM International 2008. DOI: https://doi.org/10.31399/asm.tb.emea.9781627082518

Askeland DR, Pradeep P, Wright WJ. The Science and Engineering of Materials, 6th ed. Cengage Learning 2010.

Freire C, Aquino EM. Fatigue damage mechanism and failure prevention in fiberglass reinforced plastic. Materials Research 2006; 8(1): 45-49. https://doi.org/10.1590/S1516-14392005000100009 DOI: https://doi.org/10.1590/S1516-14392005000100009

Manteghi S, Sarwar A. Fawaz Z, Zdero R, Bougherara H. Mechanical characterization of the static and fatigue compressive properties of a new glass/flax/epoxy composite material using digital image correlation, thermographic stress analysis, and conventional mechanical testing. Materials Science & Engineering 2019; 99: 940-950. https://doi.org/10.1016/j.msec.2019.02.041 DOI: https://doi.org/10.1016/j.msec.2019.02.041

Sharma N, Gibson RF, Ayorinde EO. Fatigue of foam and honeycomb core composite sandwich structures: a tutorial. Journal of Sandwich Structures and Materials 2006; 8: 263-319. https://doi.org/10.1177/1099636206063337 DOI: https://doi.org/10.1177/1099636206063337

Andreazza I, Infante V, Garcia M, Amaral P. Flexural fatigue behaviour of an asymmetric sandwich composite made of limestone and cork agglomerate. International Journal of Fatigue. 2020; 130: 105264. https://doi.org/10.1016/j.ijfatigue.2019.105264 DOI: https://doi.org/10.1016/j.ijfatigue.2019.105264

Cheloni JP, Silveira ME, Silva LJ. Effects of Amount of Glass Fiber Laminate Skins in Sandwich Composite of Filled Core. Materials Research 2019; 22(1). https://doi.org/10.1590/1980-5373-MR-2018-0025 DOI: https://doi.org/10.1590/1980-5373-mr-2018-0025

Wang RM, Zheng SR, Zheng YG. Polymer matrix composites and technology. Elsevier Science 2011. DOI: https://doi.org/10.1533/9780857092229

Sinmazçelik T, Avcu E, Ozgur B, Çoban O. A review: Fibre metal laminates, background, bonding types and applied test methods. Materials and Design 2011; 32: 3671-3685. https://doi.org/10.1016/j.matdes.2011.03.011 DOI: https://doi.org/10.1016/j.matdes.2011.03.011

Park SY, Choi WJ, Choi HS, Kwon H, Kim SH. Recent trends in surface treatment technologies for airframe adhesive bonding processing: a review (1995-2008). The Journal of Adhesion 2010; 86: 192-221. https://doi.org/10.1080/00218460903418345 DOI: https://doi.org/10.1080/00218460903418345

Davis M, Bond D. Principles and practices of adhesive bonded structural joints and repairs. International Journal of Adhesion and Adhesives 1999; 19: 91-105. https://doi.org/10.1016/S0143-7496(98)00026-8 DOI: https://doi.org/10.1016/S0143-7496(98)00026-8

Bey K, Tadjine K, Khelif R, Chemami A, Benamira M, Azari Z. Mechanical Behavior of Sandwich Composites Under Three-Point Bending Fatigue. Mechanics of Composite Materials 2015; 50(6): 747-756. https://doi.org/10.1007/s11029-015-9464-0 DOI: https://doi.org/10.1007/s11029-015-9464-0

Zenkert D, Burman M. Failure mode shifts during constant amplitude fatigue loading of GFRP/foam core sandwich beams. International Journal of Fatigue 2011; 33(2): 217-222. https://doi.org/10.1016/j.ijfatigue.2010.08.005 DOI: https://doi.org/10.1016/j.ijfatigue.2010.08.005

Bellot CM, Sangermano M, Oliveiro, Salvo M. Optical Fiber Sensors for the Detection of Hydrochloric Acid and Sea Water in Epoxy and Glass Fiber-Reinforced Polymer Composites. Materials 2019; 12(3) 379. https://doi.org/10.3390/ma12030379 DOI: https://doi.org/10.3390/ma12030379

Jin FL, Li X, Park SJ. Synthesis and application of epoxy resins: A review. Journal of Industrial and Engineering Chemistry 2015; 29: 1-11. https://doi.org/10.1016/j.jiec.2015.03.026 DOI: https://doi.org/10.1016/j.jiec.2015.03.026

Sevkat E, Tumer H, Kelestemur M, Dogan S. Effect of torsional strain-rate and lay-up sequences on the performance of hybrid composite shafts. Materials & Design 2014; 60: 310-319. https://doi.org/10.1016/j.matdes.2014.03.069 DOI: https://doi.org/10.1016/j.matdes.2014.03.069

Felipe TS, Felipe NB, Batista MC, Aquino MF. Polymer Composites Reinforced with Hybrid Fiber Fabrics. Materials Research 2017; 20(2): 555-567. https://doi.org/10.1590/1980-5373-MR-2016-0587 DOI: https://doi.org/10.1590/1980-5373-mr-2016-0587

Shen W, Luo Bailu, Yan R, Zeng H, Xu L. The mechanical behavior of sandwich composite joints for ship structures. Ocean Engineering 2017; 144: 78-89. https://doi.org/10.1016/j.oceaneng.2017.08.039 DOI: https://doi.org/10.1016/j.oceaneng.2017.08.039

Ferreira B, Silva LJ, Panzera TH, Santos JC, Freire RT, Scarpa F. Sisal-glass hybrid composites reinforced with silica microparticles. Polymer testing 2019; 74: 57-62. https://doi.org/10.1016/j.polymertesting.2018.12.026 DOI: https://doi.org/10.1016/j.polymertesting.2018.12.026

Chemami A, Bey K, Gilgert J, Azari Z. Behaviour of composite sandwich foam-laminated glass/epoxy under solicitation static and fatigue. Composites Part B: Engineering 2012; 43(3): 1178-1184. https://doi.org/10.1016/j.compositesb.2011.11.051 DOI: https://doi.org/10.1016/j.compositesb.2011.11.051

Rafiquzzaman MD, Abdullah S, Arifin AMT. Behavioural observation of laminated polymer composite under uniaxial quasi-static and cyclic loads. Fibers and Polymers 2015; 16(3): 640-649. https://doi.org/10.1007/s12221-015-0640-6 DOI: https://doi.org/10.1007/s12221-015-0640-6

Downloads

Published

2022-12-16

How to Cite

Monteiro Cheloni, J. P. ., Silveira, M. E. ., Najar Lopes, E. S. ., & da Silva, L. J. . (2022). Fatigue and Failure Analysis of Sandwich Composites using Two Types of Cross-Ply Glass Fibers Laminates and Epoxy Resin. Journal of Research Updates in Polymer Science, 11, 36–44. https://doi.org/10.6000/1929-5995.2022.11.06

Issue

Section

Articles