A Simplified Analytical Solution for the Computation of Machine Path in Filament Winding of Cylindrical Angle-Ply and Double-Double Structures

Authors

DOI:

https://doi.org/10.6000/1929-5995.2022.11.07

Keywords:

Filament winding, machine path, angle-ply, double-double, grid structure, composite tubes

Abstract

This paper presents a simplified computation approach for the machine path (or winding trajectory) of grid structures and tubes with a circular cross-section and angle-ply or double-double layup. The solution for the machine path is given through controllable degrees of freedom of a low-cost two-axis filament winding machine (FWM): mandrel rotation and translation of the delivery eye along the axis of the mandrel. The efficiency of the analytical solution for the machine path of the FWM was ascertained by automated laying the cotton thread over the geodesic and non-geodesic groove imprinted on the surface of a cylindrical polylactide mandrel. These results validated the possibility of manufacturing cylindrical composite structures with an angle-ply layup or double-double stacking sequence, without the need for expensive software, making the winding technology accessible to society and promoting university extension.

References

Green JE, Automated Filament Winding Systems. In: Peters ST, editor. Composite Filament Winding. ASM International: Materials Park 2011; pp. 7-18 DOI: https://doi.org/10.31399/asm.tb.cfw.t52860007

Huybrechts S, Hahn S, Meink T. Grid Stiffened Structures: A Survey of Fabrication, Analysis and Design Methods. In: International Conference on Composite Materials. Paris, 1999. Available from: https://www.iccm-central.org/ Proceedings/ICCM12proceedings/site/papers/pap357.pdf

Vasiliev VV, Barynin VA, Rasin AF. Anisogrid lattice structures – survey of development and application. Composite Structures 2001; 54: 361-370. https://doi.org/10.1016/S0263-8223(01)00111-8 DOI: https://doi.org/10.1016/S0263-8223(01)00111-8

Vasiliev VV, Barynin VA, Razin AF. Anisogrid composite lattice structures – Development and aerospace applications. Composite Structures 2012; 94: 1117-1127. https://doi.org/10.1016/j.compstruct.2011.10.023 DOI: https://doi.org/10.1016/j.compstruct.2011.10.023

Abdalla FH, Mutasher SA, Khalid YA, Sapuan SM, Hamouda AMS, Sahari BB, Hamdan MM. Design and Fabrication of Low Cost Filament Winding Machine. Mater Des 2007; 28: 234-239. https://doi.org/10.1016/j.matdes.2005.06.015 DOI: https://doi.org/10.1016/j.matdes.2005.06.015

Mateen MA, Shankar DVR, Hussain MM. Design and Development of Low Cost Two Axis Filament Winding Machine. J Adv Manuf Technol 2018; 12: 117-126. Available from: https://jamt.utem.edu.my/jamt/article/view/1862/3349

Krishnamurthy TN, Idkan M. Fabrication of Low Cost Filament Winding Machine. Int J Recent Trends Electr Electron Eng 2014; 4: 30-39.

Mutasher S, Mir-Nasiri N, Lin LC. Small-Scale Filament Winding Machine for Producing Fiber Composite Products. J Eng Sci Technol 2012; 7: 156-168.

Quanjin M, Rejab MRM, Sahat IM, Amiruddin M, Bachtiar D, Siregar JP, Ibrahim MI. Design of Portable 3-Axis Filament Winding Machine with Inexpensive Control System. J Mech Eng Sci 2018; 12: 3479-3493. https://doi.org/10.15282/jmes.12.1.2018.15.0309 DOI: https://doi.org/10.1088/1757-899X/257/1/012039

Quanjin M, Rejab MRM, Kumar NM, Idris MS. Experimental Assessment of the 3-Axis Filament Winding Machine Performance. Results Eng 2019; 2: 100017. https://doi.org/10.1016/j.rineng.2019.100017 DOI: https://doi.org/10.1016/j.rineng.2019.100017

Hunt CJ, Wisnom MR, Woods BKS. WrapToR Composite Truss Structures: Improved Process and Structural Efficiency. Compos Struct 2019; 230: 111467. https://doi.org/10.1016/j.compstruct.2019.111467 DOI: https://doi.org/10.1016/j.compstruct.2019.111467

Sofi T, Neunkirchen S, Schledjewski R. Path Calculation, Technology and Opportunities in Dry Fiber Winding: A Review Adv Manuf Polym Compos Sci 2018; 4: 57-72. https://doi.org/10.1080/20550340.2018.1500099 DOI: https://doi.org/10.1080/20550340.2018.1500099

Mazumdar SK, Hoa SV. Analytical Models for Low Cost Manufacturing of Composite Components by Filament Winding, Part I: Direct Kinematics. Journal of Composite Materials 1995; 29 (11): 1515-1541. https://doi.org/10.1177/002199839502901106 DOI: https://doi.org/10.1177/002199839502901106

Zu L, Xu H, Zhang B, Li D, Zi B, Zhang B. Design and production of filament-wound composite square tubes. Composite Structures 2018; 191: 202-208. https://doi.org/10.1016/j.compstruct.2018.02.069 DOI: https://doi.org/10.1016/j.compstruct.2018.02.069

Andrianov A, Tomita EK, Veras CAG, Telles BA. Low-Cost Filament Winding Technology for University Laboratories and Startups. Polymers 2022; 14: 1066. https://doi.org/10.3390/polym14051066 DOI: https://doi.org/10.3390/polym14051066

Abdel-Hady F. Filament Winding of Revolution Structures. J Reinf Plast Compos 2005; 24: 855-868. https://doi.org/10.1177/0731684405047772 DOI: https://doi.org/10.1177/0731684405047772

Seereerem S, Wen JTY. An all-Geodesic algorithm for filament winding of a T-shaped form. IEEE Trans Ind Electron 1991; 38: 484-90. https://doi.org/10.1109/41.107105 DOI: https://doi.org/10.1109/41.107105

Koussios S, Bergsma OK, Beukers A. Filament Winding. Part 2: Generic Kinematic Model and Its Solutions. Compos Part A Appl Sci Manuf 2004; 35: 197-212. https://doi.org/10.1016/j.compositesa.2003.10.004 DOI: https://doi.org/10.1016/j.compositesa.2003.10.004

Radzevich SP. Geometry of Surfaces. 2nd ed. Springer Nature: Cham, Switzerland; 2020. DOI: https://doi.org/10.1007/978-3-030-22184-3

Scholliers J. Robotic filament winding of asymmetric composite parts; 1994. Available from: https://lirias.kuleuven.be/retrieve/224495

Reynolds H. Pressure vessel design, fabrication, analysis, and testing. In: Peters ST, editor. Composite Filament Winding. ASM International: Materials Park 2011; pp. 115-148. DOI: https://doi.org/10.31399/asm.tb.cfw.t52860115

Downloads

Published

2022-12-16

How to Cite

Andrianov, A. ., & Militão, A. . (2022). A Simplified Analytical Solution for the Computation of Machine Path in Filament Winding of Cylindrical Angle-Ply and Double-Double Structures. Journal of Research Updates in Polymer Science, 11, 45–53. https://doi.org/10.6000/1929-5995.2022.11.07

Issue

Section

Articles