Annealing Temperature Effect on Structural and Luminescence Spectroscopy of Y2SiO5:Ce3+ Nanomaterial Synthesized by Sol–Gel Method

Authors

  • M.S.E. Hamroun Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques, BP 384, Zone Industrielle, Bou-Ismail CP 42004, Tipaza, Algeria and Macromolecular Research Laboratory, Faculty of Sciences, Abou Bekr Belkaid University, Chetouane, P.O. Box 119, 13000 Tlemcen, Algeria
  • A. Guenanou Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques, BP 384, Zone Industrielle, Bou-Ismail CP 42004, Tipaza, Algeria
  • L. Guerbous Laser Department/Nuclear Research Centre of Algiers (CRNA), 02 Boulevard Frantz Fanon, P.O. Box 399, 16000 Algiers, Algeria
  • R. Chebout Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques, BP 384, Zone Industrielle, Bou-Ismail CP 42004, Tipaza, Algeria
  • K. Bachari Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques, BP 384, Zone Industrielle, Bou-Ismail CP 42004, Tipaza, Algeria

DOI:

https://doi.org/10.6000/1929-5995.2022.11.08

Keywords:

X1-Y2SiO5, X2-Y2SiO5, nanophosphors, sol–gel, photoluminescence, cerium

Abstract

Ce3+ - doped Y2SiO5 nanophosphors were successfully produced by Sol-Gel process. To study the influence of the temperature on the structure and the luminescence of Y2SiO5:Ce3+, we annealed the xerogels at the temperatures 800, 900, 950, 1000, 1050 and 1250 °C. The X-ray diffraction technique (XRD), field emission scanning electron microscopy (FEG-SEM), Fourier transform infrared spectroscopy (FTIR) and steady photoluminescence were used to characterize the samples. The crystallite size keeps the same value in the temperature range 950-1050 °C. The room temperature steady photoluminescence emission and excitation of Ce3+ in X1-Y2SiO5:Ce3+ nanomaterial with increasing temperature were measured and investigated. At the crystallization temperature of 1250 °C, we have a new structure X2- Y2SiO5:Ce3+ with grain sizes larger than the X1-Y2SiO5:Ce3+ and also intense violet-blue emission.

References

Aitasalo T, Holsa J, Lastusaari M, Niittykoski J, Pelle F. Delayed luminescence of Ce3+ doped X1 form of Y2SiO5. Opt Mater 2005; 27: 1511-1515. https://doi.org/10.1016/j.optmat.2005.01.009 DOI: https://doi.org/10.1016/j.optmat.2005.01.009

Lu Q, Liu Q, Wei Q, Liu G, Zhuang J. Preparation and characterization of Lu2SiO5:Ce3+ luminescent ceramic fibers via electrospinning. Ceram Int 2013; 39: 8159-8164. https://doi.org/10.1016/j.ceramint.2013.03.090 DOI: https://doi.org/10.1016/j.ceramint.2013.03.090

Jiao H, Gao X, Wang F, Wu A, Han T. Self-assembled Y2SiO5 superstructures: A high temperature method with mixed flux. J Alloys Compd 2010; 493: 427-430. https://doi.org/10.1016/j.jallcom.2009.12.117 DOI: https://doi.org/10.1016/j.jallcom.2009.12.117

Hamroun MSE, Guerbous L, Bensafi A. Luminescent spectroscopy and structural properties of Ce3+-doped low-temperature X1–Y2SiO5 material prepared by polymer-assisted sol–gel method. Appl Phys A 2016; 122: 321. https://doi.org/10.1007/s00339-016-9790-7 DOI: https://doi.org/10.1007/s00339-016-9790-7

Antic Z, Krsmanovic R, Marinovic´-Cincovic M, Mitric M, Dramic´anin MD. Rare-earth doped (Lu0.85Y0.15)2SiO5 nanocrystalline powders obtained by polymer assisted sol–gel synthesis. Radiation Measurements 2010; 45: 475-477. https://doi.org/10.1016/j.radmeas.2009.10.016 DOI: https://doi.org/10.1016/j.radmeas.2009.10.016

Guerbous L, Derbal M, Chaminade JP. Photoluminescence and energy transfer of Tm3+ doped LiIn (WO4)2 blue phosphors. J Lumin 2010; 130: 2469-2475. https://doi.org/10.1016/j.jlumin.2010.08.014 DOI: https://doi.org/10.1016/j.jlumin.2010.08.014

Cannas C, Mainas M, Musinu A, Piccaluga G, Speghini A, Bettinelli M. Nanocrystalline luminescent Eu3+-doped Y2SiO5 prepared by sol–gel technique. Opt Mater 2005; 27: 1506-1510. https://doi.org/10.1016/j.optmat.2005.01.008 DOI: https://doi.org/10.1016/j.optmat.2005.01.008

Williamson GK, Hall WH. X-ray line broadening from filed aluminium and wolfram. Acta Metall 1953; 1: 22. https://doi.org/10.1016/0001-6160(53)90006-6 DOI: https://doi.org/10.1016/0001-6160(53)90006-6

Lin J, Su Q, Zbang H, Wang S. Crystal structure dependence of the luminescence of rare earth ions (Ce3+, Tb3+, Sm3+) in Y2SiO5. Materials Research Bulletin 1996; 31(2): 189-196. https://doi.org/10.1016/0025-5408(95)00178-6 DOI: https://doi.org/10.1016/0025-5408(95)00178-6

Qin X, Ju Y, Bernhard S, Yao N. Europium-doped yttrium silicate nanophosphors prepared by flame synthesis. Materials Research Bulletin 2007; 42: 1440-1449. https://doi.org/10.1016/j.materresbull.2006.11.021 DOI: https://doi.org/10.1016/j.materresbull.2006.11.021

Hamroun MSE, Bachari K, Guerbous L, Berrayah A, Mechernene L. Structural and optical properties of LSO scintillator-polymer composite films. Optik - International Journal for Light and Electron Optics 2019; 187: 111-116. https://doi.org/10.1016/j.ijleo.2019.05.022 DOI: https://doi.org/10.1016/j.ijleo.2019.05.022

Downloads

Published

2022-12-31

How to Cite

Hamroun, M. ., Guenanou, A. ., Guerbous, L. ., Chebout, R. ., & Bachari, K. . (2022). Annealing Temperature Effect on Structural and Luminescence Spectroscopy of Y2SiO5:Ce3+ Nanomaterial Synthesized by Sol–Gel Method. Journal of Research Updates in Polymer Science, 11, 54–60. https://doi.org/10.6000/1929-5995.2022.11.08

Issue

Section

Articles