Conjoint Effect of Boron Nitride and Surface-Enhanced Flake Graphite in Thermal Conductivity of Thermally Conductive Grease

Authors

  • Xiaojun Xiong School of Energy and Materials, Shanghai Polytechnic University, Shanghai, 201209, China
  • Yifan Li School of Energy and Materials, Shanghai Polytechnic University, Shanghai, 201209, China and Shanghai Engineering Research Center of Advanced Thermal Functional Materials, Shanghai Polytechnic University, Shanghai, 201209, China https://orcid.org/0000-0003-0107-9980

DOI:

https://doi.org/10.6000/1929-5995.2023.12.04

Keywords:

Boron Nitride, Graphite, Thermally Conductive Grease, Electric Conductivity, Viscosity

Abstract

The next generation of high-power electronic devices is expected to exhibit improved heat dissipation capabilities despite their smaller size. Current studies have investigated the utilization of hybrid fillers, our study introduces a novel approach by combining boron nitride (BN) and surface-enhanced flake graphite (G), both of which possess a platelet-like structure, to develop a thermally conductive grease. The grease shows an exceptionally high thermal conductivity of 2.21 W/mK and an extremely low electrical conductivity of 7.3×10-6 S/m. The viscosity of the grease is measured at 149 Pa·s. By incorporating hybrid fillers with a significantly high aspect ratio into EPON 828, a notable reduction of interfacial thermal resistance is observed, which is attributed to the formation of an effective pathway for phonon transfer facilitated by the unique characteristics of the hybrid fillers. Various theoretical models are employed to corroborate the experimental data, which facilitates substantiating the fundamental principles underlying the enhanced thermal conductivity of the prepared thermal grease.

References

Gwinn JP, Webb RL. Performance and testing of thermal interface materials. Microelectronics J 2003; 34: 215-222. https://doi.org/10.1016/S0026-2692(02)00191-X DOI: https://doi.org/10.1016/S0026-2692(02)00191-X

Charles Jr HK. Miniaturized electronics. Johns Hopkins APL Tech Dig 2005; 26: 402-413.

Leong C-K, Chung D. Carbon black dispersions as thermal pastes that surpass solder in providing high thermal contact conductance. Carbon 2003; 41: 2459-2469. https://doi.org/10.1016/S0008-6223(03)00247-1 DOI: https://doi.org/10.1016/S0008-6223(03)00247-1

Viswanath R, Wakharkar V, Watwe A, Lebonheur V. Thermal performance challenges from silicon to systems. Intel Technology Journal 2000; 4: 1-16.

Li Y, Xu H, Zhang Y, et al. Paving 3D interconnected Cring-C3N4@ rGO skeleton for polymer composites with efficient thermal management performance yet high electrical insulation. Int Commun Heat Mass Transf 2022; 135: 106147. https://doi.org/10.1016/j.icheatmasstransfer.2022.106147 DOI: https://doi.org/10.1016/j.icheatmasstransfer.2022.106147

Sim LC, Ramanan S, Ismail H, Seetharamu K, Goh T. Thermal characterization of Al2O3 and ZnO reinforced silicone rubber as thermal pads for heat dissipation purposes. Thermochim Acta 2005; 430: 155-165. https://doi.org/10.1016/j.tca.2004.12.024 DOI: https://doi.org/10.1016/j.tca.2004.12.024

Xu Y, Luo X, Chung D. Sodium silicate based thermal interface material for high thermal contact conductance. J Electron Packag 2000; 122: 128-131. https://doi.org/10.1115/1.483144 DOI: https://doi.org/10.1115/1.483144

Luo X, Xu A, Yunsheng, Chung D. Thermal stability of ther-mal interface pastes, evaluated by thermal contact conduc-tance measurement. J Electron Packag 2001; 123: 309-311. https://doi.org/10.1115/1.1371925 DOI: https://doi.org/10.1115/1.1371925

Lee S. How to Select a Heat Sink. Advanced Thermal Engineering, Aavid Thermal Technologies. Inc., Laconia 1996.

Yu W, Xie H, Yin L, Zhao J, Xia L, Chen L. Exceptionally high thermal conductivity of thermal grease: Synergistic effects of graphene and alumina. Int J Therm Sci 2015; 91: 76-82. https://doi.org/10.1016/j.ijthermalsci.2015.01.006 DOI: https://doi.org/10.1016/j.ijthermalsci.2015.01.006

Chiu CP, Solbrekken GL, Chung YD. Thermal modeling of grease-type interface material in PPGA application[C]// Thirteenth Annual IEEE. Semiconductor Thermal Measurement and Management Symposium. IEEE, 1997: 57-63. https://doi.org/10.1109/STHERM.1997.566783 DOI: https://doi.org/10.1109/STHERM.1997.566783

Chung D. Thermal interface materials. J Mater Eng Perform 2001; 10: 56-59. https://doi.org/10.1361/105994901770345358 DOI: https://doi.org/10.1361/105994901770345358

Li Y, Zhang T, Zhang Y, Zhao C, Zheng N, Yu W. A comprehensive experimental study regarding size dependence on thermal conductivity of graphene oxide nanosheet. Int Commun Heat Mass 2022; 130: 105764. https://doi.org/10.1016/j.icheatmasstransfer.2021.105764 DOI: https://doi.org/10.1016/j.icheatmasstransfer.2021.105764

Rimdusit S, Ishida H. Development of new class of electronic packaging materials based on ternary systems of benzoxazine, epoxy, and phenolic resins. Polymer 2000; 41: 7941-7949. https://doi.org/10.1016/S0032-3861(00)00164-6 DOI: https://doi.org/10.1016/S0032-3861(00)00164-6

Yu S, Hing P, Hu X. Thermal conductivity of polystyrene–aluminum nitride composite. Compos Part A Appl Sci Manuf 2002; 33: 289-292. https://doi.org/10.1016/S1359-835X(01)00107-5 DOI: https://doi.org/10.1016/S1359-835X(01)00107-5

Xu Y, Chung D, Mroz C. Thermally conducting aluminum nitride polymer-matrix composites. Compos Part A Appl Sci Manuf 2001; 32: 1749-1757. https://doi.org/10.1016/S1359-835X(01)00023-9 DOI: https://doi.org/10.1016/S1359-835X(01)00023-9

Zhang Y, Li Y, Dong L, et al. Robust Smart Fabrics Composed of MgO Nanostructures Encapsulated in Hollow Polystyrene Fibers for Efficient Thermoregulation. ACS Appl Nano Mater 2022; 5: 16831-16841. https://doi.org/10.1021/acsanm.2c03787 DOI: https://doi.org/10.1021/acsanm.2c03787

Kong J, Tang Y, Zhang X, Gu J. Synergic effect of acrylate liquid rubber and bisphenol A on toughness of epoxy resins. Polym Bull 2008; 60: 229-236. https://doi.org/10.1007/s00289-007-0862-x DOI: https://doi.org/10.1007/s00289-007-0862-x

Gu J, Zhang Q, Dang J, Zhang J, Chen S. Preparation and mechanical properties researches of silane coupling reagent modified β-silicon carbide filled epoxy composites. Polym Bull 2009; 62: 689-697. https://doi.org/10.1007/s00289-009-0045-z DOI: https://doi.org/10.1007/s00289-009-0045-z

Gu J, Zhang Q, Dang J, Xie C. Thermal conductivity epoxy resin composites filled with boron nitride. Polym Adv Technol 2012; 23: 1025-1028. https://doi.org/10.1002/pat.2063 DOI: https://doi.org/10.1002/pat.2063

Yung KC, Liem H. Enhanced thermal conductivity of boron nitride epoxy‐matrix composite through multi‐modal particle size mixing. J Appl Polym Sci 2007; 106: 3587-3591. https://doi.org/10.1002/app.27027 DOI: https://doi.org/10.1002/app.27027

Zhou W, Qi S, Tu C, Zhao H, Wang C, Kou J. Effect of the particle size of Al2O3 on the properties of filled heat‐conductive silicone rubber. J Appl Polym Sci 2007; 104: 1312-1318. https://doi.org/10.1002/app.25789 DOI: https://doi.org/10.1002/app.25789

Sarvar F, Whalley DC, Conway PP. Thermal interface materials-A review of the state of the art[C]//2006 1st electronic systemintegration technology conference. IEEE, 2006, 2: 1292-1302. https://doi.org/10.1109/ESTC.2006.280178 DOI: https://doi.org/10.1109/ESTC.2006.280178

Martello S, Vigo D. Exact solution of the two-dimensional finite bin packing problem. Manage Sci 1998; 44: 388-399. https://doi.org/10.1287/mnsc.44.3.388 DOI: https://doi.org/10.1287/mnsc.44.3.388

Li Y, Mehra N, Ji T, et al. The stiffness–thermal conduction relationship at the composite interface: The effect of particle alignment on the long-range confinement of polymer chains monitored by scanning thermal microscopy. Nanoscale 2018; 10: 1695-1703. https://doi.org/10.1039/C7NR06780A DOI: https://doi.org/10.1039/C7NR06780A

Mu L, He J, Li Y, et al. Molecular origin of efficient phonon transfer in modulated polymer blends: Effect of hydrogen bonding on polymer coil size and assembled microstructure. J Phys Chem C 2017; 121: 14204-14212. https://doi.org/10.1021/acs.jpcc.7b03726 DOI: https://doi.org/10.1021/acs.jpcc.7b03726

Mu L, Li Y, Mehra N, Ji T, Zhu J. Expedited phonon transfer in interfacially constrained polymer chain along self-organized amino acid crystals. ACS Appl Mater Interfaces 2017; 9: 12138-12145. https://doi.org/10.1021/acsami.7b02257 DOI: https://doi.org/10.1021/acsami.7b02257

Zhao C, Li Y, Liu Y, Xie H, Yu W. A critical review of the preparation strategies of thermally conductive and electrically insulating polymeric materials and their applications in heat dissipation of electronic devices. Advanced Composites and Hybrid Materials 2023; 6: 1-26. https://doi.org/10.1007/s42114-022-00584-2 DOI: https://doi.org/10.1007/s42114-022-00584-2

Mehra N, Mu L, Ji T, Li Y, Zhu J. Moisture driven thermal conduction in polymer and polymer blends. Compos Sci Technol 2017; 151: 115-123. https://doi.org/10.1016/j.compscitech.2017.08.010 DOI: https://doi.org/10.1016/j.compscitech.2017.08.010

Mehra N, Li Y, Yang X, et al. Engineering molecular interaction in polymeric hybrids: Effect of thermal linker and polymer chain structure on thermal conduction. Compos B Eng 2019; 166: 509-515. https://doi.org/10.1016/j.compositesb.2019.02.029 DOI: https://doi.org/10.1016/j.compositesb.2019.02.029

Mehra N, Jeske M, Yang X, et al.. Hydrogen-bond driven self-assembly of two-dimensional supramolecular melamine-cyanuric acid crystals and its self-alignment in polymer composites for enhanced thermal conduction. ACS Appl Polym Mater 2019; 1: 1291-1300. https://doi.org/10.1021/acsapm.9b00111 DOI: https://doi.org/10.1021/acsapm.9b00111

Schroder DK, Semiconductor material and device characterization. John Wiley & Sons 2015.

Liu Y, Zhang Y, Li Y, Zhang T, Xie H, Yu W. Flexible cellulose composite film incorporated by carbon nitride@ graphene oxide prepared by a “compressed-aerogel” approach for efficient thermal management. Ceram Int 2023. https://doi.org/10.1016/j.ceramint.2023.01.131 DOI: https://doi.org/10.1016/j.ceramint.2023.01.131

Dong L, Li Y. Experimental identification of topography-based artifact phenomenon for micro-/nanoscale thermal characterization of polymeric materials in scanning thermal microscopy. AIP Adv 2022; 12: 045311. https://doi.org/10.1063/5.0088360 DOI: https://doi.org/10.1063/5.0088360

Ng HY, Lu X, Lau SK. Thermal conductivity of boron nitride‐filled thermoplastics: effect of filler characteristics and composite processing conditions. Polym Compos 2005; 26: 778-790. https://doi.org/10.1002/pc.20151 DOI: https://doi.org/10.1002/pc.20151

Zhang L, Pan J, Cabrera ED, et al. Highly oriented graphitic networks grown by chemical vapor deposition as thermal interface materials. Ind Eng Chem Res 2020; 59: 22501-22508. https://doi.org/10.1021/acs.iecr.0c04519 DOI: https://doi.org/10.1021/acs.iecr.0c04519

Li Y, Zhang Y, Liu Y, Xie H, Yu W. A comprehensive review for micro/nanoscale thermal mapping technology based on scanning thermal microscopy. J Therm Sci 2022; 31: 976-1007. https://doi.org/10.1007/s11630-022-1654-1 DOI: https://doi.org/10.1007/s11630-022-1654-1

Mehra N, Li Y, Zhu J. Small organic linkers with hybrid terminal groups drive efficient phonon transport in polymers. J Phys Chem C 2018; 122: 10327-10333. https://doi.org/10.1021/acs.jpcc.8b01991 DOI: https://doi.org/10.1021/acs.jpcc.8b01991

Nielsen LE. The thermal and electrical conductivity of two-phase systems. Ind Eng Chem Fundam 1974; 13: 17-20. https://doi.org/10.1021/i160049a004 DOI: https://doi.org/10.1021/i160049a004

Hauser RA, Keith JM, King JA, Holdren JL. Thermal conductivity models for single and multiple filler carbon/liquid crystal polymer composites. J Appl Polym Sci 2008; 110: 2914-2923. https://doi.org/10.1002/app.28869 DOI: https://doi.org/10.1002/app.28869

Weber EH, Clingerman ML, King JA. Thermally conductive nylon 6, 6 and polycarbonate based resins. II. Modeling J Appl Polym Sci 2003; 88: 123-130. https://doi.org/10.1002/app.11572 DOI: https://doi.org/10.1002/app.11572

Guo M, Kashfipour MA, Li Y, Dent RS, Zhu J, Maia JM. Structure-Rheology-Property relationships in double-percolated Polypropylene/Poly (methyl methacrylate)/Boron nitride polymer composites. Compos Sci Technol 2020; 198: 108306. https://doi.org/10.1016/j.compscitech.2020.108306 DOI: https://doi.org/10.1016/j.compscitech.2020.108306

Li Y, Mehra N, Ji T, Zhu J. Realizing the nanoscale quantitative thermal mapping of scanning thermal microscopy by resilient tip–surface contact resistance models. Nanoscale Horiz 2018; 3: 505-516. https://doi.org/10.1039/C8NH00043C DOI: https://doi.org/10.1039/C8NH00043C

Li Y, Lin H, Mehra N. Identification of thermal barrier areas in graphene oxide/boron nitride membranes by scanning thermal microscopy: thermal conductivity improvement through membrane assembling. ACS Appl Nano Mater 2021; 4: 4189-4198. https://doi.org/10.1021/acsanm.1c00528 DOI: https://doi.org/10.1021/acsanm.1c00528

Zhang Y, Li Y, Lei Q, Fang X, Xie H, Yu W. Tightly-packed fluorinated graphene aerogel/polydimethylsiloxane composite with excellent thermal management properties. Compos Sci Technol 2022; 220: 109302. https://doi.org/10.1016/j.compscitech.2022.109302 DOI: https://doi.org/10.1016/j.compscitech.2022.109302

Downloads

Published

2023-06-08

How to Cite

Xiong, X. ., & Li, Y. . (2023). Conjoint Effect of Boron Nitride and Surface-Enhanced Flake Graphite in Thermal Conductivity of Thermally Conductive Grease. Journal of Research Updates in Polymer Science, 12, 27–36. https://doi.org/10.6000/1929-5995.2023.12.04

Issue

Section

Articles