Development and Characterization of Supercooled Polyethylene Naphthalate

Authors

  • Jian Wang State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR, China and College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR, China
  • Hang Li State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR, China and College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR, China https://orcid.org/0009-0000-6211-794X
  • Pan Dai College of Chemical Engineering and Environmental Science, Beijing Institute of Technology, Beijing 100081, PR, China
  • Jinnan Chen College of Chemical Engineering and Environmental Science, Beijing Institute of Technology, Beijing 100081, PR, China

DOI:

https://doi.org/10.6000/1929-5995.2023.12.07

Keywords:

Undercool, supercooling, single-polymer composites, polyethylene naphthalate

Abstract

The utilization of undercooled or supercooled polymers presents a promising approach for the creation of single-polymer composites (SPCs), applicable not only to compaction processing but also to extrusion, injection molding, and 3D printing techniques. This study focuses on the development and characterization of supercooled polyethylene naphthalate (PEN) through differential scanning calorimetry (DSC) and rheological measurements. By employing predetermined conditions, a supercooling degree of 50 ˚C for PEN was achieved. The impact of maximum heating temperature, cooling rate, and shear rate on the supercooling degree was examined, revealing that higher supercooling degrees of PEN can be attained by increasing these factors. Additionally, the flow behavior of supercooled polymer melts at various temperatures was analyzed. The supercooling state of PEN exhibited remarkable stability for a minimum duration of half an hour at temperatures exceeding 250 ˚C.

References

Wang J. Polypropylene single-polymer composites. Polypropylene-Based Biocomposites and Bionanocomposites 2017; 177-246. https://doi.org/10.1002/9781119283621.ch7 DOI: https://doi.org/10.1002/9781119283621.ch7

Abo El-Maaty MI, Bassett DC, Olley RH, et al. The hot compaction of polypropylene fibres. J Mater Sci 1996; 31: 1157-1163. https://doi.org/10.1007/BF00353094 DOI: https://doi.org/10.1007/BF00353094

Hine PJ, Ward M, Teckoe J. The hot compaction of woven polypropylene tapes. J Mater Sci 1998; 33: 2725-2733. https://doi.org/10.1023/A:101754053029 DOI: https://doi.org/10.1023/A:1017540530295

Hine PJ, Ward IM. Hot compaction of woven poly (ethylene terephthalate) multifilaments. J Appl Polym Sci 2004; 91: 2223-2233. https://doi.org/10.1002/app.13343 DOI: https://doi.org/10.1002/app.13343

Hine PJ, Astruc A, Ward IM. Hot compaction of polyethylene naphthalate. J Appl Polym Sci 2004; 93: 796-802. https://doi.org/10.1002/app.20517 DOI: https://doi.org/10.1002/app.20517

Hine PJ, Ward IM. Hot compaction of woven nylon 6, 6 multifilaments. J Appl Polym Sci 2006; 101: 991-997. https://doi.org/10.1002/app.22771 DOI: https://doi.org/10.1002/app.22771

Hine PJ, Ward IM, Jordan ND, et al. The hot compaction behaviour of woven oriented polypropylene fibres and tapes. I. Mechanical properties. Polymer 2003; 44: 1117-1131. https://doi.org/10.1016/S0032-3861(02)00809-1 DOI: https://doi.org/10.1016/S0032-3861(02)00809-1

Loos J, Schimanski T, Hofman J, et al. Morphological investigations of polypropylene single-fibre reinforced polypropylene model composites. Polymer 2001; 42: 3827-3834. https://doi.org/10.1016/S0032-3861(00)00660-1 DOI: https://doi.org/10.1016/S0032-3861(00)00660-1

Kitayama T, Utsumi S, Hamada H, et al. Interfacial properties of PP/PP composites. J Appl Polym Sci 2003; 88: 2875-2883. https://doi.org/10.1002/app.11805 DOI: https://doi.org/10.1002/app.11805

Bárány T, Izer A, Czigány T. On consolidation of self-reinforced polypropylene composites. Plast Rubber Compos 2006; 35: 375-379. https://doi.org/10.1179/174328906X128234 DOI: https://doi.org/10.1179/174328906X128234

Bárány T, Karger‐Kocsis J, Czigány T. Development and characterization of self‐reinforced poly (propylene) composites: carded mat reinforcement. Polym Adv Technol 2006; 17: 818-824. https://doi.org/10.1002/pat.813 DOI: https://doi.org/10.1002/pat.813

Hine PJ, Olley RH, Ward IM. The use of interleaved films for optimising the production and properties of hot compacted, self reinforced polymer composites. Compos Sci Technol 2008; 68: 1413-1421. https://doi.org/10.1016/j.compscitech.2007.11.003 DOI: https://doi.org/10.1016/j.compscitech.2007.11.003

Alcock B, Cabrera NO, Barkoula NM, et al. The mechanical properties of unidirectional all-polypropylene composites. Compos Part A Appl Sci Manuf 2006; 37: 716-726. https://doi.org/10.1016/j.compositesa.2005.07.002 DOI: https://doi.org/10.1016/j.compositesa.2005.07.002

Alcock B, Cabrera NO, Barkoula NM, et al. Interfacial properties of highly oriented coextruded polypropylene tapes for the creation of recyclable all‐polypropylene composites. J Appl Polym Sci 2007; 104: 118-129. https://doi.org/10.1002/app.24588 DOI: https://doi.org/10.1002/app.24588

Alcock B, Cabrera NO, Barkoula NM, et al. The mechanical properties of woven tape all-polypropylene composites. Compos Part A Appl Sci Manuf 2007; 38: 147-161. https://doi.org/10.1016/j.compositesa.2006.01.003 DOI: https://doi.org/10.1016/j.compositesa.2006.01.003

Alcock B, Cabrera NO, Barkoula NM, et al. Low velocity impact performance of recyclable all-polypropylene composites. Compos Sci Technol 2006; 66: 1724-1737. https://doi.org/10.1016/j.compscitech.2005.11.010 DOI: https://doi.org/10.1016/j.compscitech.2005.11.010

Wang J, Du Z, Lian T. Extrusion–calendering process of single‐polymer composites based on polyethylene. Polym Eng Sci 2018; 58: 2156-2165. https://doi.org/10.1002/pen.24827 DOI: https://doi.org/10.1002/pen.24827

Wang J, Song F, Yu M. Unidirectional continuous fiber-reinforced polypropylene single-polymer composites prepared by extrusion–calendering process. J Thermoplast Compos Mater 2022; 35: 303-319. https://doi.org/10.1177/0892705719886898 DOI: https://doi.org/10.1177/0892705719886898

Wang J, Mao Q, Chen J. Preparation of polypropylene single‐polymer composites by injection molding. J Appl Polym Sci 2013; 130: 2176-2183. https://doi.org/10.1002/app.39411 DOI: https://doi.org/10.1002/app.39411

Wang J, Wang S, Chen D. Development and characterization of insert injection moulded polypropylene single-polymer composites with sandwiched woven fabric. Compos Sci Technol 2015; 117: 18-25. https://doi.org/10.1016/j.compscitech.2015.05.015 DOI: https://doi.org/10.1016/j.compscitech.2015.05.015

Mao Q, Wyatt TP, Chen J, et al. Insert injection molding of high‐density polyethylene single‐polymer composites. Polym Eng Sci 2015; 55: 2448-2456. https://doi.org/10.1002/pen.24132 DOI: https://doi.org/10.1002/pen.24132

Wang J, Chen D, Wang S, et al. Insert injection molding of low-density polyethylene single-polymer composites reinforced with ultrahigh-molecular-weight polyethylene fabric. J Thermoplast Compos Mater 2018; 31: 1013-1028. https://doi.org/10.1177/0892705717734593 DOI: https://doi.org/10.1177/0892705717734593

Wang J, Wang D, Mao Q, et al. Fabric insert injection molding for the preparation of ultra-high molecular weight polyethylene/high-density polyethylene two-component self-reinforced composites. Polymers 2022; 14: 4384. https://doi.org/10.3390/polym14204384 DOI: https://doi.org/10.3390/polym14204384

Jog JP. Crystallization of polymers: polyethylene terephthalate and polyphenylene sulfide. Handbook of applied polymer processing technology. CRC Press 2020; 661-679. https://doi.org/10.1201/9781003067528 DOI: https://doi.org/10.1201/9781003067528-24

Zhang M, Tian X, Cao H, et al. 3D printing of fully recyclable continuous fiber self-reinforced composites utilizing supercooled polymer melts. Compos Part A Appl Sci Manuf 2023; 169: 107513. https://doi.org/10.1016/j.compositesa.2023.107513 DOI: https://doi.org/10.1016/j.compositesa.2023.107513

Dai P, Zhang W, Pan Y, et al. Processing of single polymer composites with undercooled polymer melt. Compos B Eng 2011; 42: 1144-1150. https://doi.org/10.1016/j.compositesb.2011.03.018 DOI: https://doi.org/10.1016/j.compositesb.2011.03.018

Wang J, Chen J, Dai P, et al. Properties of polypropylene single-polymer composites produced by the undercooling melt film stacking method. Compos Sci Technol 2015; 107: 82-88. https://doi.org/10.1016/j.compscitech.2014.12.006 DOI: https://doi.org/10.1016/j.compscitech.2014.12.006

Androsch R, Schick C. Crystal nucleation of polymers at high supercooling of the melt. Polym Crystallization 2017; 257-288. https://doi.org/10.1007/12_2015_325 DOI: https://doi.org/10.1007/12_2015_325

Schawe JEK. Comments on isothermal crystallization kinetics of polymers: Polypropylene at high supercooling. Thermochim Acta 2022; 718: 179370. https://doi.org/10.1016/j.tca.2022.179370 DOI: https://doi.org/10.1016/j.tca.2022.179370

Lamanna L, Rizzi F, Guido F, et al. Flexible and transparent aluminum‐nitride‐based surface‐acoustic‐wave device on polymeric polyethylene naphthalate. Adv Electron Mater 2019; 5: 1900095. https://doi.org/10.1002/aelm.201900095 DOI: https://doi.org/10.1002/aelm.201900095

Serrano IG, Panda J, Edvinsson T, et al. Flexible transparent graphene laminates via direct lamination of graphene onto polyethylene naphthalate substrates 2020; 2: 3156-3163. https://doi.org/10.1039/D0NA00046A DOI: https://doi.org/10.1039/D0NA00046A

Wang J, Chen J, Dai P. Polyethylene naphthalate single-polymer-composites produced by the undercooling melt film stacking method. Compos Sci Technol 2014; 91: 50-54. https://doi.org/10.1016/j.compscitech.2013.11.026 DOI: https://doi.org/10.1016/j.compscitech.2013.11.026

Cheng SZD, Wunderlich B. Glass transition and melting behavior of poly (ethylene 2, 6-naphthalenedicarboxylate). Macromolecules 1988; 21: 789-797. https://doi.org/10.1021/ma00181a040 DOI: https://doi.org/10.1021/ma00181a040

Buchner S, Wiswe D, Zachmann HG. Kinetics of crystallization and melting behaviour of poly (ethylene naphthalene-2, 6-dicarboxylate). Polymer 1989; 30: 480-488. https://doi.org/10.1016/0032-3861(89)90018-9 DOI: https://doi.org/10.1016/0032-3861(89)90018-9

Downloads

Published

2023-07-26

How to Cite

Wang, J. ., Li, H. ., Dai, P. ., & Chen, J. . (2023). Development and Characterization of Supercooled Polyethylene Naphthalate. Journal of Research Updates in Polymer Science, 12, 71–79. https://doi.org/10.6000/1929-5995.2023.12.07

Issue

Section

Articles