Nanomaterials and Nanotechnologies for Marine and Membrane Antifouling Applications

Authors

  • Vasudhareni Ramasrinivasan Department of Chemical Engineering, SSN College of Engineering, Tamil Nadu, Chennai-603110, India
  • Ananda Kumar Srinivasan Department of Chemistry College of Engineering, Anna University, Tamil Nadu, Chennai-601206, India https://orcid.org/0000-0001-5207-0201
  • K.S. Radha Department of Chemistry RMD Engineering College, Tamil Nadu, Chennai-601206, India
  • N. Sundar Department of Chemistry College of Engineering, Anna University, Tamil Nadu, Chennai-601206, India

DOI:

https://doi.org/10.6000/1929-5995.2023.12.10

Keywords:

Nanomaterials, nanocomposites, marine, membrane, anti-fouling, anticorrosion

Abstract

The major responsibility of the marine industry includes the global transportation of goods, materials, and people. To cater the longstanding challenges like degradation of materials and biofouling, it has embraced nanotechnology solutions. Nano-technology offered numerous products such as nano-ZnO, nano alumina, and nano silica, etc. to deal with corrosion in a cost-effective manner. Similarly, to address the biofouling in the aquatic environment, hybrid nanocomposites of organic-inorganic materials, photocatalytic nanomaterials, metal and metal oxide nanomaterials (nanoparticles, nanowires, nanorods), etc. are employed as viable agents to create non-toxic or low-toxic antifouling coatings. On the other hand, membrane separation technology plays a significant role in various industries including water treatment plants, food, medicine, pharmacy, biotechnology, etc. in addition to the domestic arena for the purification of drinking water. Such a wonderful technology is being totally disturbed by a troublesome problem and a predominant barrier called membrane fouling, which drastically limits the commercialization of the membranes and the whole membrane industrial technology as well. Hence, this review exclusively throws light on the role of nanomaterials and nanotechnologies developed for the prevention of fouling that occurs on submerged structures and membranes as well and to give possible solutions with increased resilience against challenges to come.

References

Anandakumar S, Denchev Z, Alagar M. Development and characterization of phosphorus containing epoxy resin coatings. Proceedings of Coatings Science International Conference (COSi) 2008; p. 93.

Chattopadhyay DK, Raju KVSN. Structural engineering of polyurethane coatings for high performance applications. Prog Polym Sci 2007; 32: 352-418. https://doi.org/10.1016/j.progpolymsci.2006.05.003 DOI: https://doi.org/10.1016/j.progpolymsci.2006.05.003

Anandakumar S, Savitha R. Protective Coatings: Novel Nanohybrid Coatings for Corrosion and Fouling Prevention. Green Corros Chem Eng Oppor Challenges 2011; 355-392. https://doi.org/10.1002/9783527641789.ch13 DOI: https://doi.org/10.1002/9783527641789.ch13

Deutsche T, Umwelt B, The Deutsche Bundesstiftung Umwelt 1991.

Selim MS, Shenashen MA, El-Safty SA, Higazy SA, Selim MM, Isago H, Elmarakbi A. Recent progress in marine foul-release polymeric nanocomposite coatings. Prog Mater Sci 2017; 87: 1-32. https://doi.org/10.1016/j.pmatsci.2017.02.001 DOI: https://doi.org/10.1016/j.pmatsci.2017.02.001

Ananthan G, Karthikeyan MM, Selva Prabhuand AC, Raghunathan. Studies on the seasonal variations in the proximate composition of ascidians from the Palk Bay, Southeast coast of India. Asian Pacific Journal of Tropical Biomedicine 2012; 2(10): 793-797. https://doi.org/10.1016/S2221-1691(12)60231-7 DOI: https://doi.org/10.1016/S2221-1691(12)60231-7

Abioye OP, Loto CA, Fayomi OSI. Evaluation of Anti-biofouling Progresses in Marine Application Journal of Bio- and Tribo-Corrosion 2019; 5: 22. https://doi.org/10.1007/s40735-018-0213-5 DOI: https://doi.org/10.1007/s40735-018-0213-5

Schneider I, Allermann K. U.S. Patent Application No. 10/510,823, 2005.

Olsen SM, Pedersen LT, Laursen MH, Kiil S, Dam-Johansen K. Enzyme-Based Antifouling Coatings: A Review. Biofouling 2007; 23: 369-383. https://doi.org/10.1080/08927010701566384

Pettitt ME, Henry SL, Callow ME, Callow JA, Clare AS. Activity of Commercial Enzymes on Settlement and Adhesion of Cypris Larvae of the Barnacle Balanus Amphitrite, Spores of the Green Alga Ulva Linza, and the Diatom Navicula Perminuta. Biofouling 2004; 20: 299-311. https://doi.org/10.1080/08927010400027068 DOI: https://doi.org/10.1080/08927010400027068

Popoola API, Fayomi OSI. Effect of some process variables on zinc coated low carbon steel substrates. Sci Res Essays 2011; 6(20): 4264-4272. https://doi.org/10.5897/SRE11.777 DOI: https://doi.org/10.5897/SRE11.777

Tesler AB, Kim P, Kolle S, Howell C, Ahanotu O, Aizenberg J. Extremely durable biofouling-resistant metallic surfaces based on electrodeposited nanoporous tungstite films on steel. Nat Commun 2015; 6: 8649. https://doi.org/10.1038/ncomms9649 DOI: https://doi.org/10.1038/ncomms9649

Armstrong E, Boyd KG, Burgess JG. Prevention of marine biofouling using natural compounds from marine organisms. Biotechnol Annu Rev 2000; 6: 221-241. https://doi.org/10.1016/S1387-2656(00)06024-5 DOI: https://doi.org/10.1016/S1387-2656(00)06024-5

Zhang YF, Zhang HM, He LS, Liu CD, Xu Y, Qian PY. Butenolide inhibits marine fouling by altering the primary metabolism of three target organisms. ACS Chem Biol 2012; 7: 1049-1058. https://doi.org/10.1021/cb200545s DOI: https://doi.org/10.1021/cb200545s

Zhang J, Liang Y, Liao XJ, Deng Z, Xu SH. Isolation of a new butenolide from the South China Sea gorgonian coral Subergorgia suberosa. Nat Prod Res 2014; 28: 150-155. https://doi.org/10.1080/14786419.2013.857668

Saurav K, Borbone N, Burgsdorf I, Teta R, Caso A, Bar-Shalom R, Esposito G, Britstein M, Steindler L, Costantino V. Identification of quorum sensing activators and inhibitors in the marine sponge sarcotragus spinosulus. Mar Drugs 2020; 18: 127. https://doi.org/10.3390/md18020127

Tintillier F, Moriou C, Petek S, Fauchon M, Hellio C, Saulnier D, Ekins M, Hooper JNA, AI-Mourabit A, Debitus C. Quorum sensing inhibitory and antifouling activities of new bromotyrosine metabolites from the polynesian sponge pseudoceratina n. sp. Mar Drugs 2020; 18: 272. https://doi.org/10.3390/md18050272 DOI: https://doi.org/10.3390/md18050272

Chen LG, Qian PY. Review on molecular mechanisms of antifouling compounds: An update since 2012. Mar Drugs 2017; 15: 264. https://doi.org/10.3390/md15090264 DOI: https://doi.org/10.3390/md15090264

Gu Y, Yu L, Mou J, Wu D, Xu M, Zhou P, Ren Y. Research strategies to develop environmentally friendly marine antifouling coatings. Mar Drugs 2020; 18. https://doi.org/10.3390/md18070371 DOI: https://doi.org/10.3390/md18070371

Almeida E, Teresa C, Orlando de Sousa D. Marine paints particular case of antifouling paints. Prog Org Coat 2007; 59: pp. 2-20. https://doi.org/10.1016/j.porgcoat.2007.01.017 DOI: https://doi.org/10.1016/j.porgcoat.2007.01.017

Coneski PN, Weise NK, Fulmer PA, et al. Development and evaluation of self-polishing urethane coatings with tethered quaternary ammonium biocides. Prog Org Coat 2013; 76: 1376-1386. https://doi.org/10.1016/j.porgcoat.2013.04.012 DOI: https://doi.org/10.1016/j.porgcoat.2013.04.012

Lin CH, Yeh YH, Lin WC, et al. Novel silicone hydrogel based on PDMS and PEGMA for contact lens application. Colloids Surf B 2014; 123: 986-994. https://doi.org/10.1016/j.colsurfb.2014.10.053 DOI: https://doi.org/10.1016/j.colsurfb.2014.10.053

Marceaux S, Bressy C. Development of polyorganosilazane- silicone marine coatings [J]. Progress in Organic Coatings 2014; 77: 1919-1928. https://doi.org/10.1016/j.porgcoat.2014.06.020 DOI: https://doi.org/10.1016/j.porgcoat.2014.06.020

Archana S, Sundaramoorthy B. Review on biofouling prevention using nanotechnology. ~ 640 ~ J Entomol Zool Stud 2019; 7: 640-648.

Mayavu P, Sugesh S, Ravindran VJ. Antibacterial activity of seagrass species against biofilm bacteria. Research Jouurnal of Microbiology 2009; 4(8): 314-319. https://doi.org/10.3923/jm.2009.314.319 DOI: https://doi.org/10.3923/jm.2009.314.319

Bavya M, Mohanapriya P, Pazhanimurugan R, Balagurunathan R. Potential bioactive compound from marine actinomycetes against biofouling bacteria. Indian Journal of Geo- Marine Science 2011; 40(4): 578-582.

G. Swain, Proceedings of the International Symposium on Sea water Drag Reduction, The Naval Undersea Warfare Center, Newport, 1998, pp. 155-161.

Bertram V. Proceedings of the 32nd WEGEMT School on Marine Coatings, Plymouth, UK, July 10-14, 2000; pp. 85-97

Matsunaga T, Nakayama T, Wake H, Takahashi M, Okochi M, Nakamura N. Biotechnol Bioeng 1998; 59: 374-378. https://doi.org/10.1002/(SICI)1097-0290(19980805)59:3<374::AID-BIT14>3.0.CO;2-E DOI: https://doi.org/10.1002/(SICI)1097-0290(19980805)59:3<374::AID-BIT14>3.0.CO;2-E

Wang X-H, Li J, Zhang J-Y, Sun Z-C, Yu L, Jing X-B, Wang F-S, Sun Z-X, Ye Z-J. Synth Met 1999; 102: 1377-1380. https://doi.org/10.1016/S0379-6779(98)00384-1 DOI: https://doi.org/10.1016/S0379-6779(98)00384-1

Branscomb ES, Rittschof D. J Exp Mar Biol Ecol 1984; 79: 149-154. https://doi.org/10.1016/0022-0981(84)90215-6 DOI: https://doi.org/10.1016/0022-0981(84)90215-6

https://www.coatingsworld.com/issues/2021-03-01/view_breaking-news/nippon-paint-marine-launches-nano-antifouling-technology/

Tian L, Rajapakse RKND. Finite element modeling of nanoscale inhomogeneities in an elastic matrix. Comput Mater Sci 2007; 41: 44-53. https://doi.org/10.1016/j.commatsci.2007.02.013 DOI: https://doi.org/10.1016/j.commatsci.2007.02.013

Koo JH. Polymer Nanocomposites: Processing, Characterization and Application, Nanoscience and Technology Series, 1st edn, McGraw-Hill 2006; 26-28.

Kordas G. Nanotechnology to improve the biofouling and corrosion performance of marine paints: from lab experiments to real tests in sea. Int J Phys Res Appl 2019; 2: 033-037. https://doi.org/10.29328/journal.ijpra.1001012 DOI: https://doi.org/10.29328/journal.ijpra.1001012

Jhaveri JH, Murthy ZVP. A comprehensive review on anti-fouling nanocomposite membranes for pressure driven membrane separation processes. Desalination 2016; 379: 137- 15. https://doi.org/10.1016/j.desal.2015.11.009 DOI: https://doi.org/10.1016/j.desal.2015.11.009

Guo W, Ngo H-H, Li J. A mini-review on membrane fouling. Bioresour Technol 2012; 122: 27-34. https://doi.org/10.1016/j.biortech.2012.04.089 DOI: https://doi.org/10.1016/j.biortech.2012.04.089

Kochkodan V, Hilal N. A comprehensive review on surface modified polymer membranes for biofouling mitigation. Desalination 2015; 356: 187-207. https://doi.org/10.1016/j.desal.2014.09.015 DOI: https://doi.org/10.1016/j.desal.2014.09.015

Elimelech M, Xiaohua Z, Childress AE, Seungkwan H. Role of membrane surface morphology in colloidal fouling of cellulose acetate and composite aromatic polyamide reverse osmosis membranes. J Membr Sci 1997; 127: 101-109. https://doi.org/10.1016/S0376-7388(96)00351-1 DOI: https://doi.org/10.1016/S0376-7388(96)00351-1

Shen L, Huang Z, Liu Y, Li R, Xu Y, Jakaj G, Lin H. Polymeric Membranes Incorporated With ZnO Nanoparticles for Membrane Fouling Mitigation: A Brief Review. Front Chem 2020; 8: 224. https://doi.org/10.3389/fchem.2020.00224

Khorshidi B, Hajinasiri J, Ma G, Bhattacharjee S, Sadrzadeh M. Thermally resistant and electrically conductive PES/ITO nanocomposite membrane. J Membr Sci 2016; 500: 151-160. https://doi.org/10.1016/j.memsci.2015.11.015 DOI: https://doi.org/10.1016/j.memsci.2015.11.015

Taghaddosi S, Akbari A, Yegani R. Preparation, characterization and anti-fouling properties of nanoclays embedded polypropylene mixed matrix membranes. Chemical Engineering Research and Design 2017; 125: 35-45. https://doi.org/10.1016/j.cherd.2017.06.036 DOI: https://doi.org/10.1016/j.cherd.2017.06.036

Ikhsan W, Syarifah N, Yusof N, Mat Nawi NI, Bilad MR, Shamsuddin N, Aziz F, Ismail AF. Halloysite Nanotube- Ferrihydrite Incorporated Polyethersulfone Mixed Matrix Membrane: Effect of Nanocomposite Loading on the Antifouling Performance. Polymers 2021; 13(3): 441. https://doi.org/10.3390/polym13030441 DOI: https://doi.org/10.3390/polym13030441

Arockiasamy Dass L, Alhoshan M, Alam J, Muthumareeswaran A, Kumar FA. Separation of proteins and antifouling properties of polyphenylsulfone based mixed matrix hollow fiber membranes. Separation and Purification Technology 2016.

Farahani MHDA, Vatanpour V. A comprehensive study on the performance and antifouling enhancement of the PVDF mixed matrix membranes by embedding different nanoparticulates: Clay, functionalized carbon nanotube, SiO2 and TiO2. Separation and Purification Technology 2018; 197: 372-381. https://doi.org/10.1016/j.seppur.2018.01.031 DOI: https://doi.org/10.1016/j.seppur.2018.01.031

Ang MBMY, Pereira JM, Trilles CA, Aquino RR, Huang S-H, Lee K-R, Lai J-Y. Performance and antifouling behavior of thin- film nanocomposite nanofiltration membranes with embedded silica spheres. Separation and Purification Technology 2019; 210: 521-529. https://doi.org/10.1016/j.seppur.2018.08.037 DOI: https://doi.org/10.1016/j.seppur.2018.08.037

Rajaeian B, Heitz A, Tade MO, Liu S. Improved separation and antifouling performance of PVA thin film nanocomposite Membranes incorporated with carboxylated TiO2 nanoparticles. Journal of Membrane Science 2015. https://doi.org/10.1016/j.memsci.2015.03.009 DOI: https://doi.org/10.1016/j.memsci.2015.03.009

Bet-Moushoul E, Mansourpanah Y, Farhadi K, Tabatabaei M. TiO2 nanocomposite based polymeric membranes: A review on performance improvement for various applications in chemical engineering processes. Chemical Engineering Journal 2016; 283: 29-46. https://doi.org/10.1016/j.cej.2015.06.124 DOI: https://doi.org/10.1016/j.cej.2015.06.124

Teow YH, Ooi BS, Ahmad AL, Lim JK. Investigation of Anti-fouling and UV-Cleaning Properties of PVDF/TiO2 Mixed-Matrix Membrane for Humic Acid Removal. Membranes 2021; 11: 16. https://doi.org/10.3390/membranes11010016 DOI: https://doi.org/10.3390/membranes11010016

Sun T, Liu Y, Shen L, Xu Y, Li R, Huang L, Lin H. Magnetic field assisted arrangement of photocatalytic TiO2 particles on membrane surface to enhance membrane antifouling performance for water treatment. Journal of Colloid and Interface Science 2020; 570: 273-285. https://doi.org/10.1016/j.jcis.2020.03.008 DOI: https://doi.org/10.1016/j.jcis.2020.03.008

Liu Q, Huang S, Zhang Y, Zhao S. Comparing the antifouling effects of activated carbon and TiO2 in ultrafiltration membrane development. Journal of Colloid and Interface Science 2018; 515: 109-118. https://doi.org/10.1016/j.jcis.2018.01.026 DOI: https://doi.org/10.1016/j.jcis.2018.01.026

Hong YH. Polyvinylidene fluoride ultrafiltration membrane blended with 459 nano-ZnO particle for photo-catalysis self-cleaning. Desalination 2014; 332: 67-75. https://doi.org/10.1016/j.desal.2013.10.026 DOI: https://doi.org/10.1016/j.desal.2013.10.026

Zhang J, Liang Y, Liao XJ, Deng Z, Xu SH. Isolation of a new butenolide from the South China Sea gorgonian coral Subergorgia suberosa. Nat Prod Res 2014; 28: 150-155. https://doi.org/10.1080/14786419.2013.857668 DOI: https://doi.org/10.1080/14786419.2013.857668

Shen L, Huang Z, Liu Y, Li R, Xu Y, Jakaj G, Lin H. Polymeric Membranes Incorporated With ZnO Nanoparticles for Membrane Fouling Mitigation: A Brief Review. Front Chem 2020; 8: 224. https://doi.org/10.3389/fchem.2020.00224 DOI: https://doi.org/10.3389/fchem.2020.00224

Li X, Li JS, Van der Bruggen B, Sun XY, Shen JY, Hana WQ, Wang LJ. Fouling behavior of polyethersulfone ultrafiltration membranes functionalized with sol-gel formed ZnO nanoparticles. Rsc Adv 2015; 5: 50711-50719. https://doi.org/10.1039/C5RA05783C DOI: https://doi.org/10.1039/C5RA05783C

Mahlangu OT, Nackaerts R, Mamba BB, Ard V. Development of hydrophilic GO-ZnO/PES membranes for treatment of pharmaceutical wastewater. Water Sci Technol 2017; 76: 501. https://doi.org/10.2166/wst.2017.194 DOI: https://doi.org/10.2166/wst.2017.194

Pintilie S, Tiron LG, Laza˘r AL, Vlad M, Bîrsan IG, Balta S. The influence of ZnO/TiO2 nanohybrid blending on the ultrafiltration polysulfone membranes. Mater Plast 2018; 55: 4963. https://doi.org/10.37358/MP.18.1.4963 DOI: https://doi.org/10.37358/MP.18.1.4963

Bahamonde Soria R, Zhu J, Gonza I, Van der Bruggen B, Luis P. Effect of (TiO2: ZnO) ratio on the anti-fouling properties of bio-inspired nanofiltration membranes. Separation and Purification Technology 2020; 117280. https://doi.org/10.1016/j.seppur.2020.117280 DOI: https://doi.org/10.1016/j.seppur.2020.117280

Mu Y, Feng H, Zhang S, Zhang C, Lu N, Luan J, Wang G. Development of highly permeable and antifouling ultrafiltration membranes based on the synergistic effect of carboxylated polysulfone and bio-inspired co-deposition modified hydroxyapatite nanotubes. Journal of Colloid and Interface Science 2020; 572: 48-61. https://doi.org/10.1016/j.jcis.2020.03.072 DOI: https://doi.org/10.1016/j.jcis.2020.03.072

Lau W-J, Emadzadeh D, Shahrin S, Goh PS, Ismail AF. Ultrafiltration Membranes Incorporated with Carbon-Based Nanomaterials for Antifouling Improvement and Heavy Metal Removal. Carbon-Based Polymer Nanocomposites for Environmental and Energy Applications 2018; 217-232. https://doi.org/10.1016/B978-0-12-813574-7.00009-5 DOI: https://doi.org/10.1016/B978-0-12-813574-7.00009-5

Xu Z, Wu T, Shi J, Wang W, Teng K, Qian X, et al. Manipulating migration behavior of magnetic graphene oxide via magnetic field induced casting and phase separation toward high- performance hybrid ultrafiltration membranes. ACS Appl Mater Interfaces 2016; 8(28): 1-40. https://doi.org/10.1021/acsami.6b04083 DOI: https://doi.org/10.1021/acsami.6b04083

Khalid A, et al. Preparation and properties of nanocomposite polysulfone/multi-walled carbon nanotubes membranes for desalination. Desalination 2015; 367: 134-144. https://doi.org/10.1016/j.desal.2015.04.001 DOI: https://doi.org/10.1016/j.desal.2015.04.001

Tofighy MA, Khanlari S, Mohammadi T. Development of advanced nanocomposite membranes by carbon-based nanomaterials (CNTs and GO). Nanocomposite Membranes for Water and Gas Separation 2020; 145-162. https://doi.org/10.1016/B978-0-12-816710-6.00006-7 DOI: https://doi.org/10.1016/B978-0-12-816710-6.00006-7

Jun B-M, Al-Hamadani YAJ, Son A, Min Park C, Jang M, Jang A, Yoon Y. Applications of metal-organic framework based membranes in water purification: A review. Separation and Purification Technology 2020; 116947. https://doi.org/10.1016/j.seppur.2020.116947 DOI: https://doi.org/10.1016/j.seppur.2020.116947

Liu C. Development of Anti-fouling Coating Using in Marine Environment. Int J Environ Monit Anal 2015; 3: 373. https://doi.org/10.11648/j.ijema.20150305.30 DOI: https://doi.org/10.11648/j.ijema.20150305.30

Rajagopal S, Nair KVK, Van Der Velde, Jenner HA. Seasonal settlement and succession of fouling communities in Kalpakkam, East coast of India. Netherlands Journal of Aquatic Ecology 1997; 30(4): 309-325. https://doi.org/10.1007/BF02085874 DOI: https://doi.org/10.1007/BF02085874

Szmechtyk T, Sienkiewicz N, Strzelec K. Polythiourethane microcapsules as novel self- healing systems for epoxy coatings. Polym Bull 2018; 75: 149-165. https://doi.org/10.1007/s00289-017-2021-3 DOI: https://doi.org/10.1007/s00289-017-2021-3

Lamprecht A, Bodmeier R. Microencapsulation. In: Ullman’s Encyclopedia of Industrial Chemistry. Weinheim: Wiley VCH Verlag GmbH & Co. KGaA 2010. https://doi.org/10.1002/14356007.a16_575.pub2 DOI: https://doi.org/10.1002/14356007.a16_575.pub2

Samadzadeh M, Boura SH, Peikaria M, Kasiriha SM, Ashrafic A. A review on self-healing coatings based on micro/ nanocapsules. Progress in Organic Coatings 2010; 68: 159-164. https://doi.org/10.1016/j.porgcoat.2010.01.006 DOI: https://doi.org/10.1016/j.porgcoat.2010.01.006

Neon Gan S, Shahabudin N. Applications of Microcapsules in Self-Healing Polymeric Materials. Microencapsul – Process Technol Ind Appl 2019. https://doi.org/10.5772/intechopen.83475 DOI: https://doi.org/10.5772/intechopen.83475

Fazli-Shokouhi S, Nasirpouri F, Khatamian M. Epoxy-matrix polyaniline/p- phenylenediamine-functionalised graphene oxide coatings with dual anti-corrosion and anti- fouling performance. RSC Adv 2021; 11: 11627-11641. https://doi.org/10.1039/D0RA10665H DOI: https://doi.org/10.1039/D0RA10665H

Chen Z, Chen GE, Xie HY, Xu ZL, Li YJ, Wan JJ, Liu LJ, Mao HF. Photocatalytic antifouling properties of novel PVDF membranes improved by incorporation of SnO2-GO nanocomposite for water treatment. Sep Purif Technol 2021; 259: 118184. https://doi.org/10.1016/j.seppur.2020.118184 DOI: https://doi.org/10.1016/j.seppur.2020.118184

Zhang L, Sha J, Chen R, Liu Q, Liu J, Yu J, Zhang H, Lin C, Wang J. Three-dimensional flower-like shaped Bi5O7I particles incorporation zwitterionic fluorinated polymers with synergistic hydration-photocatalytic for enhanced marine antifouling performance. J Hazard Mater 2020; 389: 121854. https://doi.org/10.1016/j.jhazmat.2019.121854 DOI: https://doi.org/10.1016/j.jhazmat.2019.121854

Fazli-Shokouhi S, Nasirpouri F, Khatamian M. Polyaniline-modified graphene oxide nanocomposites in epoxy coatings for enhancing the anticorrosion and antifouling properties. J Coatings Technol Res 2019; 16: 983-997. https://doi.org/10.1007/s11998-018-00173-3 DOI: https://doi.org/10.1007/s11998-018-00173-3

Chung YT, Mahmoudi E, Mohammad AW, Benamor A, Johnson D, Hilal N. Development of polysulfone-nanohybrid membranes using ZnO-GO composite for enhanced antifouling and antibacterial control. Desalination 2017; 402: 123-132. https://doi.org/10.1016/j.desal.2016.09.030 DOI: https://doi.org/10.1016/j.desal.2016.09.030

Yu Z, Liu X, Zhao F, Liang X, Tian Y. Fabrication of a low-cost nano-SiO2/PVC composite ultrafiltration membrane and its antifouling performance. J Appl Polym Sci 2015; 132: 1-11. https://doi.org/10.1002/app.41267 DOI: https://doi.org/10.1002/app.41267

Shi HW, Liu FC, Wang ZY, et al. Research Progress of Corrosion-resisting Paints for Marine Application[J]. Corrosion Science And Protection Technology 2010; 22(1): 43-46.

Saravanan P, Jayamoorthy K, Ananda Kumar S. Design and characterization of non-toxic nano-hybrid coatings for corrosion and fouling resistance. J Sci Adv Mater Devices 2016; 1: 367-378. https://doi.org/10.1016/j.jsamd.2016.07.001 DOI: https://doi.org/10.1016/j.jsamd.2016.07.001

Zhao X, Cheng L, Jia N, Wang R, Liu L, Gao C. Polyphenol-metal manipulated nanohybridization of CNT membranes with FeOOH nanorods for high-flux, antifouling and self-cleaning oil/water separation. J Memb Sci 2020; 600: 117857. https://doi.org/10.1016/j.memsci.2020.117857 DOI: https://doi.org/10.1016/j.memsci.2020.117857

Hellio C, Yebra D, Eds. Advances in Marine Antifouling Coatings and Technologies; Elsevier: Cambridge 2009. https://doi.org/10.1533/9781845696313 DOI: https://doi.org/10.1533/9781845696313

Gitlitz MH. Recent developments in marine antifouling coatings. Gitlitz MH, M & T chemicals, Incorporated. J Coating Tech 1981; 53(678).

Callow ME, Callow JA, Ista LK, Coleman SE, Nolasco AC, López GP. Use of Self-Assembled Monolayers of Different Wettabilities to Study Surface Selection and Primary Adhesion Processes of Green Algal (Enteromorpha) Zoospores. Appl Environ Microbiol 2000; 66: 3249-3254. https://doi.org/10.1128/AEM.66.8.3249-3254.2000 DOI: https://doi.org/10.1128/AEM.66.8.3249-3254.2000

Howell D, Behrends B. A review of surface roughness in antifouling coatings illustrating the importance of cutoff length. Biofouling 2006; 22: 401-410. https://doi.org/10.1080/08927010601035738 DOI: https://doi.org/10.1080/08927010601035738

Wu B, Fane AG. Microbial Relevant Fouling in Membrane Bioreactors: Influencing Factors, Characterization, and Fouling Control. Membranes 2012; 2: 565-584. https://doi.org/10.3390/membranes2030565 DOI: https://doi.org/10.3390/membranes2030565

Apolinario M, Couthino R. Understanding the biofouling of offshore and deep-sea structures. In Advances in Marine Antifouling Coatings and Technologies; Hellio C, Yebra DMY, Eds., Woodshead Publishing: Cambridge, UK, 2009; pp. 133-147. https://doi.org/10.1533/9781845696313.1.132 DOI: https://doi.org/10.1533/9781845696313.1.132

Olsen SM, Pedersen LT, Laursen MH, Kiil S, Dam-Johansen K. Enzyme-Based Antifouling Coatings: A Review. Biofouling 2007; 23: 369-383. https://doi.org/10.1080/08927010701566384 DOI: https://doi.org/10.1080/08927010701566384

Cao S, Wang JD, Chen HS, Chen DR. Progress of marine biofouling and antifouling technologies. Chinese Sci Bull 2011; 56: 598-612. https://doi.org/10.1007/s11434-010-4158-4 DOI: https://doi.org/10.1007/s11434-010-4158-4

Saurav K, Borbone N, Burgsdorf I, Teta R, Caso A, Bar-Shalom R, Esposito G, Britstein M, Steindler L, Costantino V. Identification of quorum sensing activators and inhibitors in the marine sponge sarcotragus spinosulus. Mar Drugs 2020; 18: 127. https://doi.org/10.3390/md18020127 DOI: https://doi.org/10.3390/md18020127

Kill S, Weinell CE, Pedersen MS, Dam-Johansen K. Analysis of self-polishing antifouling paints using rotary experiments and mathematical modelling. Ind Eng Chem Res 2001; 40: 3906-3920. https://doi.org/10.1021/ie010242n

Maréchal JP, Hellio C. Challenges for the development of new non-toxic antifoulingsolutions. Int J Mol Sci 2009; 10: 4623-4637. https://doi.org/10.3390/ijms10114623 DOI: https://doi.org/10.3390/ijms10114623

Yebra DM, Kiil S, Dam-Johansen K. Antifouling technology - Past, present and future steps towards efficient and environmentally friendly antifouling coatings. Prog Org Coatings 2004; 50: 75-104. https://doi.org/10.1016/j.porgcoat.2003.06.001 DOI: https://doi.org/10.1016/j.porgcoat.2003.06.001

Ferry JD. Solubility and Rate of Solution of Cuprous Oxide in Sea Water. Ind Eng Chem Chem 1946; 38: 612-617. https://doi.org/10.1021/ie50438a021 DOI: https://doi.org/10.1021/ie50438a021

Kiil S, Weinell CE, Pedersen MS, Dam-Johansen K. Analysis of self-polishing antifouling paints using rotary experiments and mathematical modeling. Ind Eng Chem Res 2001; 40: 3906-3920. https://doi.org/10.1021/ie010242n DOI: https://doi.org/10.1021/ie010242n

Rittschof D. Natural product antifoulants: One perspective on the challenges related to coatings development. Biofouling 2000; 15: 119-127. https://doi.org/10.1080/08927010009386303 DOI: https://doi.org/10.1080/08927010009386303

Pradhan S, Kumar S, Mohanty S, Nayak SK. Environmentally Benign Fouling- Resistant Marine Coatings: A Review. Polym Technol Mater 2019; 58: 498-518. https://doi.org/10.1080/03602559.2018.1482922 DOI: https://doi.org/10.1080/03602559.2018.1482922

Downloads

Published

2023-08-24

How to Cite

Ramasrinivasan, V. ., Srinivasan, A. K. ., Radha, K. ., & Sundar, N. . (2023). Nanomaterials and Nanotechnologies for Marine and Membrane Antifouling Applications. Journal of Research Updates in Polymer Science, 12, 104–126. https://doi.org/10.6000/1929-5995.2023.12.10

Issue

Section

Articles