Experimental Studies on Abrasive Water Jet Cutting of Nano SiC Particles Filled Hybrid Basalt-Glass Fibre-Reinforced Epoxy Composites

Authors

  • S. Vijayabhaskar Department of Mechanical Engineering, Sri Chandrasekharendra Saraswathi Viswa Maha Vidyalaya, Enathur, Kanchipuram, 631561, India https://orcid.org/0000-0001-7025-2316
  • T. Rajmohan Department of Mechanical Engineering, Sri Chandrasekharendra Saraswathi Viswa Maha Vidyalaya, Enathur, Kanchipuram, 631561, India
  • D. Vijayan Department of Mechanical Engineering, Sri Chandrasekharendra Saraswathi Viswa Maha Vidyalaya, Enathur, Kanchipuram, 631561, India
  • K. Palanikumar Department of Mechanical Engineering, Sri Sairam Institute of Technology, Chennai - 600044, India

DOI:

https://doi.org/10.6000/1929-5995.2023.12.11

Keywords:

AWJ, Basalt-glass, MRR, Surface roughness, Nano SiC, Swarm intelligence algorithm, SEM.

Abstract

Abrasive water jet machining (AWJM) is extensively beneficial in machining materials that are hard to cut. This investigation deals with AWJM of Nano SiC filled Epoxy reinforced with basalt-glass fiber hybrid composite. The composite is prepared by compression moulding technique. Experimental trails are performed to evaluate the impact of every process parameter on the responses i.e., surface roughness (Ra) and Material Removal Rate (MRR). The experiments are conducted by changing the standoff distance (SD), traverse speed (TS) and water pressure. The performance of the conducted experiment is analysed using a Swarm intelligence algorithm. Surface roughness and MRR are maximized by using the combination of optimum process parameter levels of 9.72 mm/min speed, 5.78 mm stand-off distance and 553 MPa jet pressure. Scanning Electron Microscopic (SEM) images are employed in detecting the morphology of machined surface and confirmed the presence of voids and fibre pull-out.

References

Li Z, Ma J, Ma H, Xu X. Properties and Applications of Basalt Fiber and Its Composites. IOP Conf Ser: Earth Environ Sci 2018; 186: 012052. https://doi.org/10.1088/1755-1315/186/2/012052 DOI: https://doi.org/10.1088/1755-1315/186/2/012052

Jain A, Singh B, Sharma KK, Shrivastava Y. Fabrication, Testing and Machining of Hybrid Basalt-Glass Fiber Reinforced Plastic composite. Indian J Pure Appl Phys 2021; 59: 258-262.

Santos MD, De Oliveira LA, Bueno AHS, Da Silva LJ, Del Pino GG, Panzera TH. Effect of Ageing on the Mechanical Performance of Thermoset Polymers: A Statistical Approach. J Res Updates Polym Sci 2020; 9: 42-29. https://doi.org/10.6000/1929-5995.2020.09.04 DOI: https://doi.org/10.6000/1929-5995.2020.09.04

Cheloni JPM, Silveira ME, Najar Lopes ES, Da Silva LJ. Fatigue and Failure Analysis of Sandwich Composites using Two Types of Cross-Ply Glass Fibers Laminates and Epoxy Resin. J Res Updates Polym Sci 2022; 11: 36-44. https://doi.org/10.6000/1929-5995.2022.11.06 DOI: https://doi.org/10.6000/1929-5995.2022.11.06

Bandeira CF, Montoro SR, Faria ST, Moreira PRS, Pereira ACC, Oliveira LF, Milanese AC. Degradability of Epoxy/Sisal Fiber Composites via Simulated Soil. J Res Updates Polym Sci 2017; 6: 12-16. https://doi.org/10.6000/1929-5995.2017.06.01.2 DOI: https://doi.org/10.6000/1929-5995.2017.06.01.2

Yuvaraj N, Pradeep Kumar M, Mugilvalavan M, Shakeel Ahmed LAK. Abrasive Water Jet Machining process: A state of art of review. J Manuf Process 2020; 49: 271-322. https://doi.org/10.1016/j.jmapro.2019.11.030 DOI: https://doi.org/10.1016/j.jmapro.2019.11.030

Momber AW, Kovacevic R. Principles of abrasive water jet machining. First ed. Springer-Verlag London Limited, London 1998. https://doi.org/10.1007/978-1-4471-1572-4 DOI: https://doi.org/10.1007/978-1-4471-1572-4

Thirumalai Kumaran S, Uthayakumar M, Mathiyazhagan P, Krishna Kumar K, Muthu Kumar P. Effect of abrasive grain size of the AWJM performance on AA (6351)-SiC-B4C hybrid composite. Appl Mech Mater 2015. https://doi.org/10.4028/www.scientific.net/AMM.766-767.324 DOI: https://doi.org/10.4028/www.scientific.net/AMM.766-767.324

Bitter JG. A study of erosion phenomena part I. Wear 1963a; 6(1): 5-21. https://doi.org/10.1016/0043-1648(63)90003-6 DOI: https://doi.org/10.1016/0043-1648(63)90003-6

Bitter JG. A study of erosion phenomena part II. Wear 1963b; 6(3): 169-190. https://doi.org/10.1016/0043-1648(63)90073-5 DOI: https://doi.org/10.1016/0043-1648(63)90073-5

Sheldon GL, Finnie I. The mechanism of material removal in the erosive cutting of brittle materials. J Eng Ind 1966; 88(4): 393-399. https://doi.org/10.1115/1.3672667 DOI: https://doi.org/10.1115/1.3672667

Niranjan CA, Srinivas S, Ramachandra M. Effect of process parameters on depth of penetration and topography of AZ91 magnesium alloy in abrasive water jet cutting. J Magnes Alloy 2018; 6: 366-374. https://doi.org/10.1016/j.jma.2018.07.001 DOI: https://doi.org/10.1016/j.jma.2018.07.001

Hlaváč LM. Investigation of the abrasive water jet trajectory curvature inside the kerf. J Mater Process Technol 2009; 209(8): 4154-4161. https://doi.org/10.1016/j.jmatprotec.2008.10.009 DOI: https://doi.org/10.1016/j.jmatprotec.2008.10.009

Srinivas S, Babu NR. Role of garnet and silicon carbide abrasives in abrasive waterjet cutting of aluminum-silicon carbide particulate metal matrix composites. Int J Appl Mech 2011; 1: 109-122. https://doi.org/10.47893/IJARME.2011.1022 DOI: https://doi.org/10.47893/IJARME.2011.1022

Wang J, Wong WCK, A study of abrasive waterjet cutting of metallic coated sheet steels. Int J Mach Tools Manuf 1999; 39(6): 855-870. https://doi.org/10.1016/S0890-6955(98)00078-9 DOI: https://doi.org/10.1016/S0890-6955(98)00078-9

Azmir MA, Ahsan AK, Rahmah A. Effect of abrasive water jet machining parameters on aramid fibre reinforced plastics composite. Int J Mater Form 2009; 2(1): 37-44. https://doi.org/10.1007/s12289-008-0388-2 DOI: https://doi.org/10.1007/s12289-008-0388-2

muthak kannan P, Manikandan V, Uthayakumar M, Arun Prasath K, Sureshkumar S. Investigation of the Machining Performance of Basalt Fiber Composites by Abrasive Water Jet Machining. Mater Phys Mech 2021; 47: 830-842.

Samanta S, Cha`kraborty S. Parametric optimization of some non-traditional machining processes using artificial bee colony algorithm. Eng Appl Artif Intell 2011; 24(6): 946-957. https://doi.org/10.1016/j.engappai.2011.03.009 DOI: https://doi.org/10.1016/j.engappai.2011.03.009

Yusup N, Sarkheyli A, Zain AM, Hashim SZM, Ithnin N. Estimation of optimal machining control parameters using artificial bee colony. J Intell Manuf 2014; 25(6): 1463-1472. https://doi.org/10.1007/s10845-013-0753-y DOI: https://doi.org/10.1007/s10845-013-0753-y

Yusup N, Zain AM, Hashim SZM, Evolutionary techniques in optimizing machining parameters: Review and recent applications (2007–2011). Expert Syst Appl 2012; 39(10): 9909-9927. https://doi.org/10.1016/j.eswa.2012.02.109 DOI: https://doi.org/10.1016/j.eswa.2012.02.109

Mohan K, Rajmohan T, Fabrication and Characterization of MWCNT Filled Hybrid Natural Fiber Composites. J Nat Fibers 2017; 14(6): 864-874. https://doi.org/10.1080/15440478.2017.1300115 DOI: https://doi.org/10.1080/15440478.2017.1300115

Adem AM, Azmeraw HE. The manufacturing practices and parameters optimization on abrasive jet machining for surface preparation of mild steels. Results Eng 2022; 15: 100457. https://doi.org/10.1016/j.rineng.2022.100457 DOI: https://doi.org/10.1016/j.rineng.2022.100457

Karaboga D, Basturk B. On the performance of artificial bee colony (ABC) algorithm. Appl Soft Comput 2008; 8(1): 687-697. https://doi.org/10.1016/j.asoc.2007.05.007 DOI: https://doi.org/10.1016/j.asoc.2007.05.007

Vijayan D, Rajmohan T. Modeling and evolutionary computation on drilling of carbon fiber-reinforced polymer nanocomposite: an integrated approach using RSM based PSO. J Braz Soc Mech Sci Eng 2019; 41: 395. https://doi.org/10.1007/s40430-019-1892-7 DOI: https://doi.org/10.1007/s40430-019-1892-7

Nandakumar A, Rajmohan T, Vijayabhaskar S, Vijayan D. Sustainable Grinding Performances of Nano-Sic Reinforced Al Matrix Composites under MQL: An Integrated Box–Behnken Design Coupled with Artificial Bee Colony (ABC) Algorithm. Sustain Chem 2022; 3(4): 482-510. https://doi.org/10.3390/suschem3040030 DOI: https://doi.org/10.3390/suschem3040030

Jahjouh MM, Arafa MH, Alqedra MA. Artificial Bee Colony (ABC) algorithm in the design optimization of RC continuous beams. Struct Multidiscip Optim 2013; 47(6): 963-979. https://doi.org/10.1007/s00158-013-0884-y DOI: https://doi.org/10.1007/s00158-013-0884-y

He H, Li K. Study on Flexural Strength and Flexural Failure Modes of Carbon Fiber/Epoxy Resin Composites. J Res Updates Polym Sci 2014; 3: 10-15. https://doi.org/10.6000/1929-5995.2014.03.01.2 DOI: https://doi.org/10.6000/1929-5995.2014.03.01.2

Agarwal G, Patnaik A, Sharma RK. Thermo-mechanical properties of silicon carbide filled chopped glass fiber reinforced epoxy composites. Int J Adv Struct Eng 2013; 5(1): 1-8. https://doi.org/10.1186/2008-6695-5-21 DOI: https://doi.org/10.1186/2008-6695-5-21

Gnanavelbabu A, Rajkumar K, Saravanan P. Investigation on the cutting quality characteristics of abrasive water jet machining of AA6061-B4C-hBN hybrid metal matrix composites. Mater Manuf Process 2018; 33(12): 1313-23. https://doi.org/10.1080/10426914.2018.1453146 DOI: https://doi.org/10.1080/10426914.2018.1453146

Kumar KR, Sreebalaji VS, Pridhar T. Characterization and optimization of abrasive water jet machining parameters of aluminium/tungsten carbide composites. Measurement 2018; 117: 57-66. https://doi.org/10.1016/j.measurement.2017.11.059 DOI: https://doi.org/10.1016/j.measurement.2017.11.059

Khan AA, Munajat NB, Tajudin HB. A study on abrasive water jet machining of aluminum with garnet abrasives. Int J Appl Sci 2005; 5(9): 1650-1654. https://doi.org/10.3923/jas.2005.1650.1654 DOI: https://doi.org/10.3923/jas.2005.1650.1654

Llanto JM, Vafadar A, Aamir M, Tolouei-Rad M. Analysis and Optimization of Process Parameters in Abrasive Waterjet Contour Cutting of AISI 304L. Metals 2021; 11: 1362. https://doi.org/10.3390/met11091362 DOI: https://doi.org/10.3390/met11091362

Azmir MA, Ahsan AK. A study of abrasive water jet machining process on glass/ epoxy composite laminate. J Mater Process Technol 2009; 209(20): 6168-6173. https://doi.org/10.1016/j.jmatprotec.2009.08.011 DOI: https://doi.org/10.1016/j.jmatprotec.2009.08.011

Azmir MA, Ahsan AK. Investigation on glass/epoxy composite surfaces machined by abrasive water jet machining. J Mater Process Technol 2008; 198(1-3): 122-128. https://doi.org/10.1016/j.jmatprotec.2007.07.014 DOI: https://doi.org/10.1016/j.jmatprotec.2007.07.014

Chithirai Pon Selvan M, Mohana Sundara Raju N, Sachidananda HK. Effects of process parameters on surface roughness in abrasive waterjet cutting of aluminium. Front Mech Eng 2012; 7(4): 439-444. https://doi.org/10.1007/s11465-012-0337-0 DOI: https://doi.org/10.1007/s11465-012-0337-0

Begic-Hajdarevic D, Cekic A, Mehmedovic M, Djelmic A. Experimental study on surface roughness in abrasive water jet cutting. Procedia Eng 2015; 100: 394-399. https://doi.org/10.1016/j.proeng.2015.01.383 DOI: https://doi.org/10.1016/j.proeng.2015.01.383

Wong IMM, Azmi AI, Lee CC, Mansor AF. Kerf taper and delamination damage minimization of FRP hybrid composites under abrasive water-jet machining. Int J Adv Manuf Technol 2018; 94(5): 1727-1744. https://doi.org/10.1007/s00170-016-9669-y DOI: https://doi.org/10.1007/s00170-016-9669-y

Teng X, Chen W, Huo D, Shyha I, Lin C. Comparison of cutting mechanism when machining micro and nano-particles reinforced SiC/Al metal matrix composites. Compos Struct 2018; 203: 636-647. https://doi.org/10.1016/j.compstruct.2018.07.076 DOI: https://doi.org/10.1016/j.compstruct.2018.07.076

Yan L, Chouw N, Huang L, Kasal, B. Effect of alkali treatment on microstructure and mechanical properties of coir fibres, coir fibre reinforced-polymer composites and reinforced-cementitious composites. Constr Build Mater 2016; 112: 168-182. https://doi.org/10.1016/j.conbuildmat.2016.02.182 DOI: https://doi.org/10.1016/j.conbuildmat.2016.02.182

Zhao Y, Lu W, Zhu Y, Zuo D. Pretreatment of aircraft carbon fiber-reinforced plastic skin by plastic abrasive jet machining. J Adhes Sci Technol 2022: 1-23. https://doi.org/10.1080/01694243.2022.2128302 DOI: https://doi.org/10.1080/01694243.2022.2128302

Kumar UA, Alam SM, Laxminarayana P. Influence of abrasive water jet cutting on glass fibre reinforced polymer (GFRP) composites. Mater Today: Proc 2020; 27: 1651-1654. https://doi.org/10.1016/j.matpr.2020.03.554 DOI: https://doi.org/10.1016/j.matpr.2020.03.554

Rakshit R, Das AK. A review on cutting of industrial ceramic materials. Precis Eng 2019; 59: 90-109. https://doi.org/10.1016/j.precisioneng.2019.05.009 DOI: https://doi.org/10.1016/j.precisioneng.2019.05.009

Prasanth RSS, Hans Raj K. Optimization of straight cylindrical turning using artificial bee colony (ABC) algorithm. J Inst Eng (India) 2017C; 98(2): 171-177. https://doi.org/10.1007/s40032-016-0263-8 DOI: https://doi.org/10.1007/s40032-016-0263-8

Salehi M, Hosseinzadeh M, Elyasi M. A study on optimal design of process parameters in tube drawing process of rectangular parts by combining box–behnken design of experiment, response surface methodology and artificial bee colony algorithm. Trans Indian Inst Met 2016; 69(6): 1223-1235. https://doi.org/10.1007/s12666-015-0670-1 DOI: https://doi.org/10.1007/s12666-015-0670-1

Vijayan D, Rajmohan T. Influence of Fiber Content on Tensile and Flexural Properties of Ramie/Areca Fiber Composite—Ān Algorithmic Approach Using Firefly Algorithm, in: Palanikumar K, Thiagarajan R, Latha B. (Eds.) Bio-Fiber Reinforced Composite Materials. Composites Science and Technology. Springer, Singapore 2022; pp. 235-252. https://doi.org/10.1007/978-981-16-8899-7_14 DOI: https://doi.org/10.1007/978-981-16-8899-7_14

Downloads

Published

2023-09-25

How to Cite

Vijayabhaskar, S. ., Rajmohan, T. ., Vijayan, D. ., & Palanikumar, K. . (2023). Experimental Studies on Abrasive Water Jet Cutting of Nano SiC Particles Filled Hybrid Basalt-Glass Fibre-Reinforced Epoxy Composites. Journal of Research Updates in Polymer Science, 12, 127–139. https://doi.org/10.6000/1929-5995.2023.12.11

Issue

Section

Articles