Properties of Nanogenerator Materials for Energy-Harvesting Application

Authors

  • W.H. Abd. Majid Low Dimensional Materials Research Centre, Department of Physics, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia https://orcid.org/0000-0001-8273-5892
  • N. Ahmad Low Dimensional Materials Research Centre, Department of Physics, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia and Physics Department, Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia, 57000 Sungai Besi, Kuala Lumpur, Malaysia
  • A.K. Rosli Low Dimensional Materials Research Centre, Department of Physics, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
  • M.A. Mohd Sarjidan Low Dimensional Materials Research Centre, Department of Physics, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
  • N.A. Halim Physics Department, Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia, 57000 Sungai Besi, Kuala Lumpur, Malaysia

DOI:

https://doi.org/10.6000/1929-5995.2023.12.12

Keywords:

Polarization, P(VDF-TrFE), Ferroelectric, Pyroelectric, Thermally Stimulated Current (TSC)

Abstract

Advancements in nanotechnology and materials science have led to the development of a variety of nanogenerator materials with improved properties, making energy harvesting technologies increasingly viable for various applications, such as powering wearable devices, remote sensors, and even small electronic gadgets in the future. The evolution of hybrid materials consisting of polymers and nanoparticles as efficient energy harvesters and energy storage devices is in high demand nowadays. Most investigations on organic ferroelectric P(VDF-TrFE) as a polymer host of polymer nanocomposite devices were primally focused on the β phase due to its excellent electrical properties for various application purposes. Nanofiller is also introduced into the polymer host to produce a polymer nanocomposite with enhanced properties. A brief description of various physical quantities related to ferroelectric, dielectric, pyroelectric effects and Thermally Stimulated Current (TSC) for energy harvesting applications in nanogenerator materials is presented. This article explores the different materials and uses of various nanogenerators. It explains the basics of the pyroelectric effect and the structure of pyroelectric nanogenerators (PNGs), as well as recent advancements in micro/nanoscale devices. Additionally, it discusses how the performance of ferroelectric, dielectric, pyroelectric, and TSC are impacted by the annealing treatment of P(VDF-TrFE) polymer.

References

Xue H, Yang Q, Wang D, et al. A wearable pyroelectric nanogenerator and self-powered breathing sensor. Nano Energy 2017; 147-54. https://doi.org/10.1016/j.nanoen.2017.05.056

Ryu H, Kim SW. Emerging pyroelectric nanogenerators to convert thermal energy into electrical energy. Small 2021; 1903469. https://doi.org/10.1002/smll.201903469

Zhao X, Askari H, Chen J. Nanogenerators for smart cities in the era of 5G and Internet of Things. Joule 2021; 5(6): 1391-431. https://doi.org/10.1016/j.joule.2021.03.013 DOI: https://doi.org/10.1016/j.joule.2021.03.013

Pang Y, Cao Y, Derakhshani M, Fang Y, Wang ZL, Cao C. Hybrid energy-harvesting systems based on triboelectric nanogenerators. Matter 2021; 4(1): 116-43. https://doi.org/10.1016/j.matt.2020.10.018 DOI: https://doi.org/10.1016/j.matt.2020.10.018

Kim Y, Wu X, Lee C, Oh JH. Characterization of PI/PVDF-TrFE composite nanofiber-based triboelectric nanogenerators depending on the type of the electrospinning system. ACS Appl Mater Interfaces 2021; 13(31): 36967-75. https://doi.org/10.1021/acsami.1c04450 DOI: https://doi.org/10.1021/acsami.1c04450

Dai Y, Zhong X, Xu T, Li Y, Xiong Y, Zhang S. High‐performance triboelectric nanogenerator based on electrospun PVDF‐Graphene Oxide nanosheet composite nanofibers. Nano Energy 2021; 11(9): 2300426. https://doi.org/10.1002/ente.202300426 DOI: https://doi.org/10.1002/ente.202300426

Ong DT, Koay JS, Sim MT, et al. High performance composition-tailored PVDF triboelectric nanogenerator enabled by low temperature-induced phase transition. Nano Energy 2023; 113: 108555. https://doi.org/10.1016/j.nanoen.2023.108555 DOI: https://doi.org/10.1016/j.nanoen.2023.108555

Cai C, Luo B, Liu Y, et al. Advanced triboelectric materials for liquid energy harvesting and emerging application. Mater Today 2022; 52: 299-326. https://doi.org/10.1016/j.mattod.2021.10.034

Choi YS, Kim SW, Kar‐Narayan S. Materials‐related strategies for highly efficient triboelectric energy generators. Adv Energy Mater 2021; 11(7): 2003802. https://doi.org/10.1002/aenm.202003802 DOI: https://doi.org/10.1002/aenm.202003802

Nguyen QH, Ta QT, Tran N. Review on the transformation of biomechanical energy to green energy using triboelectric and piezoelectric based smart materials. J Clean Prod 2022; 133702. https://doi.org/10.1016/j.jclepro.2022.133702 DOI: https://doi.org/10.1016/j.jclepro.2022.133702

Delgado-Alvarado E, Elvira-Hernández EA, Hernández-Hernández J, Huerta-Chua J, Vázquez-Leal H, Martínez-Castillo J, García-Ramírez PJ, Herrera-May AL. Recent progress of nanogenerators for green energy harvesting: Performance, applications, and challenges. Nanomaterials 2022; 12(15): 2549. https://doi.org/10.3390/nano12152549 DOI: https://doi.org/10.3390/nano12152549

Divya S, Oh TH, Bodaghi M. 1D Nanomaterial Based Piezoelectric Nanogenerators for Self-Powered Biocompatible Energy Harvesters. European Polymer Journal 2023; 112363. https://doi.org/10.1016/j.eurpolymj.2023.112363 DOI: https://doi.org/10.1016/j.eurpolymj.2023.112363

Wang YM, Zeng Q, He L, et al. Fabrication and application of biocompatible nanogenerators. Iscience 2021; 24(4). https://doi.org/10.1016/j.isci.2021.102274 DOI: https://doi.org/10.1016/j.isci.2021.102274

Gan WC, Majid WHA. Enhancing pyroelectric and ferroelectric properties of PVDF composite thin films by dispersing a non-ferroelectric inclusion La2O3 for application in sensors. Org Electron 2015; 26: 121-8. https://doi.org/10.1016/j.orgel.2015.07.027

Jayalakshmy M, Philip J. Pyroelectricity in strontium barium niobate/polyurethane nanocomposites for thermal/infrared detection. Compos Sci Technol 2015; 109: 6-11. https://doi.org/10.1016/j.compscitech.2015.01.007 DOI: https://doi.org/10.1016/j.compscitech.2015.01.007

Ojha DP, Joshi B, Samuel E, et al. Supersonically Sprayed Flexible ZnO/PVDF Composite Films with Enhanced Piezoelectricity for Energy Harvesting and Storage. Int J Energy Res 2023; 2023. https://doi.org/10.1155/2023/3074782 DOI: https://doi.org/10.1155/2023/3074782

Zhang W, Wu G, Zeng H, et al. The Preparation, Structural Design, and Application of Electroactive Poly (vinylidene fluoride)-Based Materials for Wearable Sensors and Human Energy Harvesters. Polymers 2023; 15(13): 2766. https://doi.org/10.3390/polym15132766 DOI: https://doi.org/10.3390/polym15132766

Yuan J, Yang X, Zheng D, et al. Perovskite quantum dot-based tandem triboelectric-solar cell for boosting the efficiency and rain energy harvesting. Nano Energy 2023; 110: 108341. https://doi.org/10.1016/j.nanoen.2023.108341 DOI: https://doi.org/10.1016/j.nanoen.2023.108341

Nie J, Zhu L, Zhai W, Berbille A, Li L, Wang ZL. Flexible piezoelectric nanogenerators based on P (VDF-TrFE)/CsPbBr3 quantum dot composite films. ACS Appl Electron Mater 2021; 3(5): 2136-44. https://doi.org/10.1021/acsaelm.1c00137 DOI: https://doi.org/10.1021/acsaelm.1c00137

Devadas B, Imae T. Effect of carbon dots on conducting polymers for energy storage applications. ACS Sustain Chem Eng 2018; 6(1): 127-34.

http://dx.doi.org/10.1021/acssuschemeng.7b01858 DOI: https://doi.org/10.1021/acssuschemeng.7b01858

Ahmad N, Majid WA, Zaini MS, Rosli AK, Adnan RH, Halim NA. Energy harvesting performance of a novel polymer-nanocrystal composite of P (VDF-TrFE)/ZnO QD films. Mater Sci Eng B 2023; 289: 116256. https://doi.org/10.1016/j.mseb.2022.116256

Xu Y. Ferroelectric materials and their applications. Elsevier; 2013.

Batra AK, Aggarwal MD. Pyroelectric materials: infrared detectors, particle accelerators and energy harvesters 2013. DOI: https://doi.org/10.1117/3.1000982

Mai M, Ke S, Lin P, Zeng X. Ferroelectric polymer thin films for organic electronics. J Nanomater 2015; 16(1): 181. https://doi.org/10.1155/2015/812538 DOI: https://doi.org/10.1155/2015/812538

Kawai H. The piezoelectricity of poly (vinylidene fluoride). Jpn J Appl Phys; 8(7): 975. DOI: https://doi.org/10.1143/JJAP.8.975

Bergman Jr JG, McFee JH, Crane GR. Pyroelectricity and optical second harmonic generation in polyvinylidene fluoride films. Appl Phys Lett 1971; 18(5): 203-5. https://doi.org/10.1063/1.1653624 DOI: https://doi.org/10.1063/1.1653624

Doll WW, Lando JB. Polymorphism of poly (vinylidene fluoride). III. The crystal structure of phase II. J Macromol Sci B 1970; 4(2): 309-29. https://doi.org/10.1063/1.1653624 DOI: https://doi.org/10.1080/00222347008212505

Furukawa T. Structure and functional properties of ferroelectric polymers. Adv. Colloid Interface Sci 1997; 71: 183-208. https://doi.org/10.1016/S0001-8686(97)90017-8 DOI: https://doi.org/10.1016/S0001-8686(97)90017-8

Zhu G, Zeng Z, Zhang L, Yan X. Piezoelectricity in β-phase PVDF crystals: A molecular simulation study. Comput Mater Sci 2008; 44(2): 224-9. https://doi.org/10.1016/j.commatsci.2008.03.016 DOI: https://doi.org/10.1016/j.commatsci.2008.03.016

Furukawa T. Ferroelectric properties of vinylidene fluoride copolymers. Ph Transit: A Multinational Journal 1989; 18(3-4): 143-211. https://doi.org/10.1080/01411598908206863 DOI: https://doi.org/10.1080/01411598908206863

Weber N, Lee YS, Shanmugasundaram S, Jaffe M, Arinzeh TL. Characterization and in vitro cytocompatibility of piezoelectric electrospun scaffolds. Acta Biomater 2010; 6(9): 3550-6. https://doi.org/10.1016/j.actbio.2010.03.035 DOI: https://doi.org/10.1016/j.actbio.2010.03.035

Jia N, He Q, Sun J, Xia G, Song R. Crystallization behavior and electroactive properties of PVDF, P (VDF-TrFE) and their blend films. Polym Test 2017; 57: 302-6. https://doi.org/10.1016/j.polymertesting.2016.12.003 DOI: https://doi.org/10.1016/j.polymertesting.2016.12.003

Chauhan SS, Beigh NT, Mukherjee D, Mallick D. Development and Optimization of Highly Piezoelectric BTO/PVDF-TrFE Nanocomposite Film for Energy Harvesting Application. In 2022 IEEE International Conference on Emerging Electronics (ICEE) 2022; p. 1-5. https://doi.org/10.1109/ICEE56203.2022.10117949 DOI: https://doi.org/10.1109/ICEE56203.2022.10117949

Kullukçu B, Bathaei M, Awais M, Mirzajani H, Beker L. Piezoelectric PVDF-TrFE/PET Energy Harvesters for Structural Health Monitoring (SHM) Applications. Integr Ferroelectr 2023; 237(1): 216-31. https://doi.org/10.1080/10584587.2023.2239101 DOI: https://doi.org/10.1080/10584587.2023.2239101

Kim D, Hong S, Li D, et al. A spring-type piezoelectric energy harvester. RSC Adv 2013; 3(10): 3194-8. https://doi.org/10.1039/C2RA22554A DOI: https://doi.org/10.1039/c2ra22554a

Apelt S, Höhne S, Mehner E, et al. Poly (vinylidene fluoride‐co‐trifluoroethylene) Thin Films after Dip‐and Spin‐Coating. Macromol Mater Eng 2022; 307(10): 2200296. https://doi.org/10.1002/mame.202200296 DOI: https://doi.org/10.1002/mame.202200296

Rahul MT, Chacko SK, Vinodan K, et al. Multiferroic and energy harvesting characteristics of P(VDF-TrFE)-CuFe2O4 flexible films. Polymer 2022; 14; 252: 124910. https://doi.org/10.1016/j.polymer.2022.124910 DOI: https://doi.org/10.1016/j.polymer.2022.124910

Shepelin NA, Lussini VC, Fox PJ, et al. 3D printing of poly (vinylidene fluoride-trifluoroethylene): a poling-free technique to manufacture flexible and transparent piezoelectric generators. MRS Commun 2019; 9(1): 159-64. https://doi.org/10.1557/mrc.2019.19 DOI: https://doi.org/10.1557/mrc.2019.19

Koroglu L, Ayas E, Ay N. 3D Printing of Polyvinylidene Fluoride Based Piezoelectric Nanocomposites: An Overview. Macromol Mater Eng 2021; 306(10): 2100277. https://doi.org/10.1002/mame.202100277 DOI: https://doi.org/10.1002/mame.202100277

Rodrigues-Marinho T, Perinka N, Costa P, Lanceros-Mendez S. Printable lightweight polymer-based energy harvesting systems: materials, processes and applications. Mater Today Sustain 2022; 100292. https://doi.org/10.1016/j.mtsust.2022.100292 DOI: https://doi.org/10.1016/j.mtsust.2022.100292

Mahdi RI, Gan WC, Abd. Majid WH. Hot plate annealing at a low temperature of a thin ferroelectric P (VDF-TrFE) film with an improved crystalline structure for sensors and actuators. Sensors 2014; 14(10): 19115-27. https://doi.org/10.3390/s141019115 DOI: https://doi.org/10.3390/s141019115

Alim KA, Fonoberov VA, Shamsa M, Balandin AA. Micro-Raman investigation of optical phonons in ZnO nanocrystals. J of Appl Phy 2005; 97(12). https://doi.org/10.1063/1.1944222 DOI: https://doi.org/10.1063/1.1944222

Fu YS, Du XW, Kulinich SA et al. Stable aqueous dispersion of ZnO quantum dots with strong blue emission via simple solution route. J Am Chem Soc 2007; 129(51): 16029-33. https://doi.org/10.1021/ja075604i DOI: https://doi.org/10.1021/ja075604i

Singh AK, Pal P, Gupta V, Yadav TP, Gupta V, Singh SP. Green synthesis, characterization and antimicrobial activity of zinc oxide quantum dots using Eclipta alba. Mater Chem Phys 2018; 203, 40-48. https://doi.org/10.1016/j.matchemphys.2017.09.049 DOI: https://doi.org/10.1016/j.matchemphys.2017.09.049

Kamruzzaman M. The effect of ZnO/ZnSe core/shell nanorod arrays photoelectrodes on PbS quantum dot sensitized solar cell performance. Nanoscale Adv 2020; 2(1): 286-95. https://doi.org/10.1039/C9NA00523D DOI: https://doi.org/10.1039/C9NA00523D

Park DY, Lim JH, Ha MY, Moon DG. High efficiency quantum dot light-emitting diode by solution printing of zinc oxide nanoparticles. J Nanosci Nanotechnol 2020; 20(7): 4454-7. https://doi.org/10.1166/jnn.2020.17591 DOI: https://doi.org/10.1166/jnn.2020.17591

Schoenhalz AL, Arantes JT, Fazzio A, Dalpian GM. Surface and quantum confinement effects in ZnO nanocrystals. J Phys Chem C 2010; 114(43): 18293-7. https://doi.org/10.1021/jp103768v DOI: https://doi.org/10.1021/jp103768v

Özgür Ü, Alivov YI, Liu C, Teke A, Reshchikov MA, Doğan S, Avrutin VC, Cho SJ, Morkoç AH. A comprehensive review of ZnO materials and devices. J Appl Phys 2005; 98(4). https://doi.org/10.1063/1.1992666 DOI: https://doi.org/10.1063/1.1992666

Morkoç H, Özgür Ü. Zinc oxide: fundamentals, materials and device technology. John Wiley & Sons; 2008. DOI: https://doi.org/10.1002/9783527623945

Rahman F. Zinc oxide light-emitting diodes: a review. Opt Eng 2019; 58(1): 010901. https://doi.org/10.1117/1.OE.58.1.010901 DOI: https://doi.org/10.1117/1.OE.58.1.010901

Mohamed WA, Abd El-Gawad HH, Mekkey SD, Galal HR, Labib AA. Zinc oxide quantum dots: Confinement size, photophysical and tunning optical properties effect on photodecontamination of industrial organic pollutants. Opt Mater 2021; 118: 111242. https://doi.org/10.1016/j.optmat.2021.111242 DOI: https://doi.org/10.1016/j.optmat.2021.111242

Asok A, Gandhi MN, Kulkarni AR. Enhanced visible photoluminescence in ZnO quantum dots by promotion of oxygen vacancy formation. Nanoscale 2012; 4(16): 4943-6. https://doi.org/10.1039/C2NR31044A DOI: https://doi.org/10.1039/c2nr31044a

Chen Z, Li XX, Du G, Chen N, Suen AY. A sol–gel method for preparing ZnO quantum dots with strong blue emission. J Lumin 2011; 131(10): 2072-7. https://doi.org/10.1016/j.jlumin.2011.05.009 DOI: https://doi.org/10.1016/j.jlumin.2011.05.009

Huang Z, Hao J, Blackburn JL, Beard MC. Pyroelectricity of Lead Sulfide (PbS) Quantum Dot Films Induced by Janus-Ligand Shells. ACS nano 2021; 15(9): 14965-71. https://doi.org/10.1021/acsnano.1c05185 DOI: https://doi.org/10.1021/acsnano.1c05185

Kołodziejczak-Radzimska A, Markiewicz E, Jesionowski T. Structural characterisation of ZnO particles obtained by the emulsion precipitation method. J Nanomater 2012; 15. https://doi.org/10.1155/2012/656353 DOI: https://doi.org/10.1155/2012/656353

Wang Z, Yu R, Pan C, et al. Light-induced pyroelectric effect as an effective approach for ultrafast ultraviolet nanosensing. Nature commun 2015; 6(1): 8401. https://doi.org/10.1038/ncomms9401 DOI: https://doi.org/10.1038/ncomms9401

Fathi S, Sheikhi MH, Zerafat MM. Pyro-Phototronic Effect Coupled in Self-powered, Fast and Broadband Photodetector Based on CIS/CTS Heterojunction. Surf Interfaces 2023; 103283. https://doi.org/10.1016/j.surfin.2023.103283 DOI: https://doi.org/10.1016/j.surfin.2023.103283

Ahmed AA, Qahtan TF, Hashim MR, Nomaan AT, Al-Hardan NH, Rashid M. Eco-friendly ultrafast self-powered p-Si/n-ZnO photodetector enhanced by photovoltaic-pyroelectric coupling effect. Ceram Int 2022; 48(11): 16142-55. https://doi.org/10.1016/j.ceramint.2022.02.162 DOI: https://doi.org/10.1016/j.ceramint.2022.02.162

Gokana MR, Wu CM, Motora KG, Qi JY, Yen WT. Effects of patterned electrode on near infrared light-triggered cesium tungsten bronze/poly (vinylidene) fluoride nanocomposite-based pyroelectric nanogenerator for energy harvesting. J Power Sources 2022; 536: 231524. https://doi.org/10.1016/j.jpowsour.2022.231524 DOI: https://doi.org/10.1016/j.jpowsour.2022.231524

Jin L, Zhang Y, Cao M, et al. Light-induced pyroelectric property of self-powered photodetectors based on all-inorganic perovskite quantum dots. Nanotechnology 2021; 32(23): 235203. https://doi.org/10.1088/1361-6528/abe672 DOI: https://doi.org/10.1088/1361-6528/abe672

Bhadwal N, Ben Mrad R, Behdinan K. Review of Zinc Oxide Piezoelectric Nanogenerators: Piezoelectric Properties, Composite Structures and Power Output. Sensors 2023; 23(8): 3859. https://doi.org/10.3390/s23083859 DOI: https://doi.org/10.3390/s23083859

He Q, Li X, Zhang J, Zhang H, Briscoe J. P–N junction-based ZnO wearable textile nanogenerator for biomechanical energy harvesting. Nano Energy 2021; 85: 105938. https://doi.org/10.1016/j.nanoen.2021.105938 DOI: https://doi.org/10.1016/j.nanoen.2021.105938

Abubakar S, Tan ST, Liew JY, Talib ZA, Sivasubramanian R, Vaithilingam CA, Indira SS, Oh WC, Siburian R, Sagadevan S, Paiman S. Controlled Growth of Semiconducting ZnO Nanorods for Piezoelectric Energy Harvesting-Based Nanogenerators. Nanomaterials 2023; 13(6): 1025. https://doi.org/10.3390/nano13061025 DOI: https://doi.org/10.3390/nano13061025

Obreja P, Cristea D, Dinescu A, Romaniţan C. Influence of surface substrates on the properties of ZnO nanowires synthesized by hydrothermal method. Appl Surf Sci 2019; 463: 1117-23. https://doi.org/10.1016/j.apsusc.2018.08.191 DOI: https://doi.org/10.1016/j.apsusc.2018.08.191

Jalali N, Briscoe J, Woolliams P, et al. Passivation of zinc oxide nanowires for improved piezoelectric energy harvesting devices. J Phys: Conf Ser 2013; 476(1): p. 012131. IOP Publishing. https://doi.org/10.1088/1742-6596/476/1/012131 DOI: https://doi.org/10.1088/1742-6596/476/1/012131

Consonni V, Lord AM. Polarity in ZnO nanowires: A critical issue for piezotronic and piezoelectric devices. Nano Energy 2021; 83: 105789. https://doi.org/10.1016/j.nanoen.2021.105789 DOI: https://doi.org/10.1016/j.nanoen.2021.105789

Li T, Li YT, Qin WW, Zhang PP, Chen XQ, Hu XF, Zhang W. Piezoelectric size effects in a zinc oxide micropillar. Nanoscale Res Lett 2015; 10: 1-7. DOI: https://doi.org/10.1186/s11671-015-1081-2

Sánchez-Godoy HE, Salim KM, Rodríguez-Rojas R, Zarazúa I, Masi S. In Situ Ethanolamine ZnO Nanoparticle Passivation for Perovskite Interface Stability and Highly Efficient Solar Cells. Nanomaterials 2022; 12(5): 823. https://doi.org/10.3390/nano12050823 DOI: https://doi.org/10.3390/nano12050823

Adnan RH, Woon KL, Chanlek N, Nakajima H, Majid WH. Ligand-Stabilized ZnO Quantum Dots: Molecular Dynamics and Experimental Study. Aust J Chem 2017; 7 0(10): 1110-7. https://doi.org/10.1071/CH17078 DOI: https://doi.org/10.1071/CH17078

Dias CJ, Das-Gupta DK. Inorganic ceramic/polymer ferroelectric composite electrets. IEEE Trans Dielectr Electr Insul 1996; 3(5): 706-34. Available from: (https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=544188) DOI: https://doi.org/10.1109/94.544188

Guggilla P, Batra AK. Novel electroceramic: polymer composites-preparation, properties and applications. IntechOpen; 2011. Available from: (https://www.researchgate.net/profile/Ashok Batra/publication/221914421_Novel_Electroceramic_Polymer_Composites_-_Preparation_Properties_and_Applications/links/00b4952a1f6c961f90000000/Novel-Electroceramic-Polymer-Composites-Preparation-Properties-and-Applications.pdf) DOI: https://doi.org/10.5772/17049

Slabov V, Kopyl S, Soares dos Santos MP, Kholkin AL. Natural and eco-friendly materials for triboelectric energy harvesting. Nanomicro Lett 2020; 12: 1-8. https://doi.org/10.1007/s40820-020-0373-y DOI: https://doi.org/10.1007/s40820-020-0373-y

Cai C, Luo B, Liu Y, Fu Q, Liu T, Wang S, Nie S. Advanced triboelectric materials for liquid energy harvesting and emerging application. Materials Today 2022; 52: 299-326. https://doi.org/10.1016/j.mattod.2021.10.034 DOI: https://doi.org/10.1016/j.mattod.2021.10.034

Kim J, Lee JH, Ryu H, et al. High‐performance piezoelectric, pyroelectric, and triboelectric nanogenerators based on P(VDF‐TrFE) with controlled crystallinity and dipole alignment. Adv Funct Mater 2017; 27(22): 1700702. https://doi.org/10.1002/adfm.201700702 DOI: https://doi.org/10.1002/adfm.201700702

Gunasekhar R, Sathiyanathan P, Reza MS, Prasad G, Prabu AA, Kim H. Polyvinylidene Fluoride/Aromatic Hyperbranched Polyester of Third-Generation-Based Electrospun Nanofiber as a Self-Powered Triboelectric Nanogenerator for Wearable Energy Harvesting and Health Monitoring Applications. Polymers 2023; 15(10): 2375. https://doi.org/10.3390/polym15102375 DOI: https://doi.org/10.3390/polym15102375

Javed R, Zia M, Naz S, Aisida SO, Ain NU, Ao Q. Role of capping agents in the application of nanoparticles in biomedicine and environmental remediation: recent trends and future prospects. J Nanobiotechnology 2020; 18: 1-5. https://doi.org/10.1186/s12951-020-00704-4 DOI: https://doi.org/10.1186/s12951-020-00704-4

Korlacki R, Saraf RF, Ducharme S. Electrical control of photoluminescence wavelength from semiconductor quantum dots in a ferroelectric polymer matrix. Appl Phys Lett 2011; 99(15).

http://dx.doi.org/10.1063/1.3651322 DOI: https://doi.org/10.1063/1.3651322

Zhang X, Xu J, Shi S, et al. Ferroelectric-like hysteresis effect observed in carbon quantum dots sandwiched between PMMA and PEDOT: PSS hybrid film. RSC Adv 2016; 6(63): 58733-9. DOI: https://doi.org/10.1039/C6RA07443J

Ahmed RM, Morsi RM. Polymer nanocomposite dielectric and electrical properties with quantum dots nanofiller. Mod Phys Lett B 2017; 31(30): 1750278. https://doi.org/10.1142/S0217984917502785 DOI: https://doi.org/10.1142/S0217984917502785

Li L, Cheng J, Cheng Y et. al. Polymer dielectrics exhibiting an anomalously improved dielectric constant simultaneously achieved high energy density and efficiency enabled by CdSe/Cd 1− x Zn x S quantum dots. J Mater Chem A 2020; 8(27): 13659-70. https://doi.org/10.1039/d0ta02760j DOI: https://doi.org/10.1039/D0TA02760J

Kao KC. Dielectric phenomena in solids. Elsevier; 2004. Available from: (https://cds.cern.ch/record/824239/files/ 0123965616_TOC.pdf)

Lu J, Wong CP. Nanoparticle-based high-k dielectric composites: opportunities and challenges. Nanopackaging: nanotechnologies and electronics packaging 2008; 121-37. DOI: https://doi.org/10.1007/978-0-387-47325-3_7

Usman M. Studies of Ferroelectric and Multiferroic Behavior in [Ba (Zr, Ti) O3] 1-y: [CoFe2O4] y System (Doctoral dissertation, Quaid-i-Azam University, Islamabad).

Kremer F, Schönhals A, editors. Broadband dielectric spectroscopy. Springer Science & Business Media; 2002. DOI: https://doi.org/10.1007/978-3-642-56120-7

Furukawa T, Johnson GE. Dielectric relaxations in a copolymer of vinylidene fluoride and trifluoroethylene. J Appl Phys 1981; 52(2): 940-3. DOI: https://doi.org/10.1063/1.328781

Gan WC. Ferroelectric and pyroelectric properties of form IV Poly (Vinylidene Fluoride) and its composites/Gan Wee Chen (Doctoral dissertation, University of Malaya).

Arshad AN, Wahid MH, Rusop M, Majid WH, Subban RH, Rozana MD. Dielectric and structural properties of poly (vinylidene fluoride)(PVDF) and poly (vinylidene fluoride-trifluoroethylene)(PVDF-TrFE) filled with magnesium oxide nanofillers. J Nanomater 2019; 2019. https://doi.org/10.1155/2019/5961563 DOI: https://doi.org/10.1155/2019/5961563

Li J, Zhao C, Xia K, Liu X, Li D, Han J. Enhanced piezoelectric output of the PVDF-TrFE/ZnO flexible piezoelectric nanogenerator by surface modification. Appl Surf Sci 2019; 463: 626-34. https://doi.org/10.1016/j.apsusc.2018.08.266 DOI: https://doi.org/10.1016/j.apsusc.2018.08.266

Tan KS, Gan WC, Velayutham TS, Abd Majid WH. Pyroelectricity enhancement of PVDF nanocomposite thin films doped with ZnO nanoparticles. Smart mater struct 2014; 23(12): 125006. https://doi.org/10.1088/0964-1726/23/12/125006 DOI: https://doi.org/10.1088/0964-1726/23/12/125006

Vo HT, Shi FG. Towards model-based engineering of optoelectronic packaging materials: dielectric constant modeling. Microelectronics journal 2002 May 6; 33(5-6): 409-15. DOI: https://doi.org/10.1016/S0026-2692(02)00010-1

Sahoo R, Singh NK, Bajpai V. A novel approach for modeling MRR in EDM process using utilized discharge energy. Mech Syst Signal Process 2023; 185: 109811. https://doi.org/10.1016/j.ymssp.2022.109811 DOI: https://doi.org/10.1016/j.ymssp.2022.109811

Mahdi RI, Gan WC, Abd Majid WH, Mukri NI, Furukawa T. Ferroelectric polarization and pyroelectric activity of functionalized P (VDF-TrFE) thin film lead free nanocomposites. Polymer 2018; 141: 184-93. https://doi.org/10.1016/j.polymer.2018.03.004 DOI: https://doi.org/10.1016/j.polymer.2018.03.004

Ploss B, Ploss B, Shin FG, Chan HL, Choy CL. Pyroelectric activity of ferroelectric PT/PVDF-TRFE. IEEE transactions on dielectrics and electrical insulation 2000; 7(4): 517-22. DOI: https://doi.org/10.1109/94.868071

Ng KL, Chan HL, Choy CL. Piezoelectric and pyroelectric properties of PZT/P (VDF-TrFE) composites with constituent phases poled in parallel or antiparallel directions. IEEE transactions on ultrasonics, ferroelectrics, and frequency control 2000; 47(6): 1308-15. https://doi.org/10.1109/58.883519 DOI: https://doi.org/10.1109/58.883519

Suresh MB, Yeh TH, Yu CC, Chou CC. Dielectric and ferroelectric properties of polyvinylidene fluoride (PVDF)-Pb0. 52Zr0. 48TiO3 (PZT) nano composite films. Ferroelectrics 2009; 381(1): 80-6. DOI: https://doi.org/10.1080/00150190902869699

Ahmad N, Majid WA, Zaini MS, Rosli AK, Adnan RH, Halim NA. Energy harvesting performance of a novel polymer-nanocrystal composite of P(VDF-TrFE)/ZnO QD films. Mater Sci Eng B 2023; 289: 116256. https://doi.org/10.1016/j.mseb.2022.116256 DOI: https://doi.org/10.1016/j.mseb.2022.116256

Dash S, Choudhary RN, Goswami MN. Enhanced dielectric and ferroelectric properties of PVDF-BiFeO3 composites in 0–3 connectivity. J Alloys Compd 2017; 715: 29-36. https://doi.org/10.1016/j.jallcom.2017.04.310 DOI: https://doi.org/10.1016/j.jallcom.2017.04.310

Lang, S. B. (1974). Sourcebook of Pyroelectricity, Gordon and Breach. New York.

Furukawa T, Wen JX, Suzuki K, Takashina Y, Date M. Piezoelectricity and pyroelectricity in vinylidene fluoride/trifluoroethylene copolymers. J Appl Phys 1984; 56(3): 829-34. DOI: https://doi.org/10.1063/1.334016

Bowen CR, Taylor J, Le Boulbar E, Zabek D, Topolov VY. A modified figure of merit for pyroelectric energy harvesting. Mater Lett 2015; 138: 243-6. https://doi.org/10.1016/j.matlet.2014.10.004 DOI: https://doi.org/10.1016/j.matlet.2014.10.004

Lang SB. Pyroelectricity: from ancient curiosity to modern imaging tool. Phys Today 2005; 58(8): 31-6. DOI: https://doi.org/10.1063/1.2062916

Kishore RA, Priya S. A review on low-grade thermal energy harvesting: Materials, methods and devices. Mater 2018; 11(8): 1433. https://doi.org/10.3390/ma11081433 DOI: https://doi.org/10.3390/ma11081433

Tichý J, Erhart J, Kittinger E, Privratska J. Fundamentals of piezoelectric sensorics: mechanical, dielectric, and thermodynamical properties of piezoelectric materials. Springer Science & Business Media; 2010. DOI: https://doi.org/10.1007/978-3-540-68427-5

Majid WA, Richardson TH, Lacey D, Topacli A. Qualitative evaluation of pyroelectric mechanisms in Langmuir–Blodgett films containing a cyclic polysiloxane substituted with aliphatic side chains using Fourier transform infrared (FTIR) spectroscopy. Thin Solid Films 2000; 376(1-2): 225-31. DOI: https://doi.org/10.1016/S0040-6090(00)01353-5

WC G, Majid WH. The effect of gases on pyroelectric properties of PVDF/TiO2 treated by plasma etcher. Trans Mate Res Soc Jpn 2009; 34(1): 67-71. DOI: https://doi.org/10.14723/tmrsj.34.67

Mahdi RI, Majid WA. Piezoelectric and pyroelectric properties of BNT-base ternary lead-free ceramic–polymer nanocomposites under different poling conditions. RSC Adv 2016; 6(84): 81296-309. https://doi.org/10.1039/C6RA12033D DOI: https://doi.org/10.1039/C6RA12033D

Navid A, Lynch CS, Pilon L. Purified and porous poly (vinylidene fluoride-trifluoroethylene) thin films for pyroelectric infrared sensing and energy harvesting. Smart Mater Struct 2010; 19(5): 055006. https://doi.org/10.1088/0964-1726/19/5/055006 DOI: https://doi.org/10.1088/0964-1726/19/5/055006

Gan WC, Majid WH. Enhancing pyroelectric and ferroelectric properties of PVDF composite thin films by dispersing a non-ferroelectric inclusion La2O3 for application in sensors. Org Electron 2015; 26: 121-8. https://doi.org/10.1016/j.orgel.2015.07.027 DOI: https://doi.org/10.1016/j.orgel.2015.07.027

Yang Y, Guo W, Pradel KC, Zhu G, Zhou Y, Zhang Y, Hu Y, Lin L, Wang ZL. Pyroelectric nanogenerators for harvesting thermoelectric energy. Nano Lett 2012; 12(6): 2833-8. https://doi.org/10.1021/nl3003039 DOI: https://doi.org/10.1021/nl3003039

Anand A, Bhatnagar MC. Role of vertically aligned and randomly placed zinc oxide (ZnO) nanorods in PVDF matrix: Used for energy harvesting. Mater Today Energy 2019; 13: 293-301. https://doi.org/10.1016/j.mtener.2019.06.005 DOI: https://doi.org/10.1016/j.mtener.2019.06.005

Ryu H, Kim SW. Emerging pyroelectric nanogenerators to convert thermal energy into electrical energy. Small 2021; 17(9): 1903469. https://doi.org/10.1002/smll.201903469 DOI: https://doi.org/10.1002/smll.201903469

Xue H, Yang Q, Wang D, et al. A wearable pyroelectric nanogenerator and self-powered breathing sensor. Nano Energy 2017; 38: 147-54. https://doi.org/10.1016/j.nanoen.2017.05.056 DOI: https://doi.org/10.1016/j.nanoen.2017.05.056

Iwamoto M, Taguchi D. Research trend in thermally stimulated current method for development of materials and devices in Japan. Jpn J Appl Phys 2018; 57(3S2): 03EA04. https://doi.org/10.7567/JJAP.57.03EA04 DOI: https://doi.org/10.7567/JJAP.57.03EA04

Van Turnhout J. Thermally stimulated discharge of polymer electrets. Polymer Journal. 1971; 2(2): 173-91. DOI: https://doi.org/10.1295/polymj.2.173

Belana J, Pujal M, Colomer P, Montserrat S. Cold crystallization effect on α and ρ amorphous poly (ethylene terephthalate) relaxations by thermally stimulated discharge currents. Polymer 1988; 29(10): 1738-44. DOI: https://doi.org/10.1016/0032-3861(88)90385-0

Mizutani T, Yamada T, Ieda M. Thermally stimulated currents in polyvinylidene fluoride. I. Unstretched alpha-form PVDF. J Phys D: Appl Phys1981; 14(6)1139.

Van Turnhout J. Thermally stimulated discharge of electrets. Electrets 2005: 81-215. DOI: https://doi.org/10.1007/3540173358_11

Capsal JF, Dantras E, Lacabanne C. Molecular mobility interpretation of the dielectric relaxor behavior in fluorinated copolymers and terpolymers. J Non Cryst Solids 2013; 363: 20-5. https://doi.org/10.1016/j.jnoncrysol.2012.12.008 DOI: https://doi.org/10.1016/j.jnoncrysol.2012.12.008

Ahmad N, Majid WA, Halim NA. Thermally Stimulated Current Study and Relaxation Behaviour of Annealed Copolymer P (VDF-TrFE) Films for Potential Pyroelectric Energy Harvesting. J Electron Mater 2020; 49(9): 5585-99. DOI: https://doi.org/10.1007/s11664-020-08297-2

Diogo HP, Ramos JJ. Slow molecular mobility in the crystalline and amorphous solid states of glucose as studied by thermally stimulated depolarization currents (TSDC). Carbohydr Res 2008; 343(16): 2797-803. https://doi.org/10.1016/j.carres.2008.07.002 DOI: https://doi.org/10.1016/j.carres.2008.07.002

Sature KR, Patil BJ, Dahiwale SS, Bhoraskar VN, Dhole SD. Development of computer code for deconvolution of thermoluminescence glow curve and DFT simulation. J Lumin 2017; 192: 486-95. https://doi.org/10.1016/j.jlumin.2017.06.016 DOI: https://doi.org/10.1016/j.jlumin.2017.06.016

Yamada T, Mizutani T, Ieda M. Thermally stimulated currents in polyvinylidene fluoride. II. Effects of stretching. J Phys D: Appl Phys 1982; 15(2): 289. DOI: https://doi.org/10.1088/0022-3727/15/2/014

Teyssedre G, Lacabanne C. Study of the thermal and dielectric behavior of P (VDF-TrFE) copolymers in relation with their electroactive properties. Ferroelectrics 1995; 171(1): 125-44. DOI: https://doi.org/10.1080/00150199508018427

Hughes ST, Piercy AR. Study of pyroelectric and relaxation phenomena in poly (vinylidene fluoride) using thermal current analysis. J Phys D: Appl Phys 1987; 20(9): 1175. DOI: https://doi.org/10.1088/0022-3727/20/9/014

Mizutani T, Yamada T, Ieda M. Thermally stimulated currents in polyvinylidene fluoride. I. Unstretched alpha-form PVDF. Journal of Physics D: Applied Physics. 1981; 14(6): 1139. DOI: https://doi.org/10.1088/0022-3727/14/6/022

Teyssedre G, Bernes A, Lacabanne C. DSC and TSC study of a VDF/TrFE copolymer. Thermochimica acta. 1993 Oct 26; 226: 65-75. DOI: https://doi.org/10.1016/0040-6031(93)80207-Q

Bruzzi M, Gabelloni F, Calisi N, Caporali S, Vinattieri A. Defective states in micro-crystalline CsPbBr3 and their role on photoconductivity. Nanomaterials 2019; 9(2): 177. https://doi.org/10.3390/nano9020177 DOI: https://doi.org/10.3390/nano9020177

Kielar M, Daanoune M, François‐Martin O, et al. Insights into the failure mechanisms of organic photodetectors. Adv Electron Mater 2018; 4(2): 1700526. https://doi.org/10.1002/aelm.201700526 DOI: https://doi.org/10.1002/aelm.201700526

Downloads

Published

2023-10-04

How to Cite

Majid, W. A. ., Ahmad, N. ., Rosli, A. ., Sarjidan, M. M. ., & Halim, N. . (2023). Properties of Nanogenerator Materials for Energy-Harvesting Application. Journal of Research Updates in Polymer Science, 12, 140–161. https://doi.org/10.6000/1929-5995.2023.12.12

Issue

Section

Articles