Physicochemical Properties of Films from Semirefined Carrageenan/TiO2 Integrated with Cinnamaldehyde Pickering Emulsion for Active Food Packaging

Authors

  • Khadijah Husna Abd Hamid Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300, Kuantan, Pahang, Malaysia https://orcid.org/0000-0002-8079-8715
  • Azilah Ajit Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300, Kuantan, Pahang, Malaysia
  • Azren Aida Asmawi Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300, Kuantan, Pahang, Malaysia
  • Mohd Hafiz Arzmi Department of Fundamental Dental and Medical Sciences, Kulliyyah of Dentistry, International Islamic University Malaysia, Pahang, Malaysia https://orcid.org/0000-0002-9470-6412
  • Nurul Aini Mohd Azman Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300, Kuantan, Pahang, Malaysia https://orcid.org/0000-0002-7984-565X

DOI:

https://doi.org/10.6000/1929-5995.2024.13.01

Keywords:

Active food packaging, plastics waste, nanoparticle, pickering emulsion, cinnamaldehyde, titanium dioxide

Abstract

Plastic waste has become a significant global environmental issue, particularly in the context of food packaging. In the present study, active packaging films were fabricated by integrating chitosan-stabilized cinnamaldehyde Pickering emulsion (PE) and titanium dioxide particles (TNPs) into the semirefined carrageenan (SRC) matrix. The impact of cinnamaldehyde PE and TNPs on the physical and mechanical attributes of the SRC films was explored. The integration of TNPs (3%, w/v) and 0.5% cinnamaldehyde PE revealed promising mechanical properties, with 21.86 MPa tensile strength and 34.21% of elongation at break value. The inclusion of TNPs and cinnamaldehyde PE led to enhancements in the moisture content and water solubility of the SRC films. The thermal stability of the film was marginally increased with 0.5% cinnamaldehyde PE. Scanning electron microscopy (SEM) revealed a uniform distribution of active compounds in the SRC matrix. The study findings highlight the potential of cinnamaldehyde PE and TNPs in active food packaging films as eco-friendly alternatives to conventional petrochemical-derived plastics in food packaging.

References

Maraz KM, Karmaker N, Meem RA, Khan RA. Development of Biodegradable Packaging Materials from Bio-Based Raw Materials. J Res Updates Polym Sci 2019; 20(8): 66-84. https://doi.org/10.6000/1929-5995.2019.08.09 DOI: https://doi.org/10.6000/1929-5995.2019.08.09

Basavegowda N, Baek KH. Advances in Functional Biopolymer-Based Nanocomposites for Active Food Packaging Applications. Polymers (Basel) 2021; 13(23): 4198. https://doi.org/10.3390/polym13234198 DOI: https://doi.org/10.3390/polym13234198

Wullandari P, Sedayu BB, Novianto TD, Prasetyo AW. Characteristic of semi refined and refined carrageenan flours used in the making of biofilm (bioplastic). In: IOP Conf Ser Earth Environ Sci. IOP Publishing Ltd; 2021.

https://doi:10.1088/1755-1315/733/1/012112 DOI: https://doi.org/10.1088/1755-1315/733/1/012112

Aga MB, Dar AH, Nayik GA, Panesar PS, Allai F, Khan SA, et al. Recent insights into carrageenan-based bio-nanocomposite polymers in food applications: A review. Int J Biol Macromol 2021; 192: 197-209. https://doi.org/10.1016/j.ijbiomac.2021.09.212 DOI: https://doi.org/10.1016/j.ijbiomac.2021.09.212

Yahaya WAW, Chik SMST, Azman NAM, Nor AM, Abd. Hamid KH, Ajit A. Mechanical properties and antioxidant activity of carrageenan-cellulose nanofiber incorporated butylated hydroxyanisole as active food packaging. Mater Today Proc. 2023. https://doi.org/10.1016/j.matpr.2023.08.180 DOI: https://doi.org/10.1016/j.matpr.2023.08.180

Kim YH, Kim HJ, Yoon KS, Rhim JW. Cellulose nanofiber/deacetylated quaternary chitosan composite packaging film for growth inhibition of Listeria monocytogenes in raw salmon. Food Packag Shelf Life 2023; 35: 101040.

https://doi.org/10.1016/j.fpsl.2023.101040 DOI: https://doi.org/10.1016/j.fpsl.2023.101040

Ezati P, Rhim JW, Molaei R, Priyadarshi R, Han S. Cellulose nanofiber-based coating film integrated with nitrogen-functionalized carbon dots for active packaging applications of fresh fruit. Postharvest Biol Technol 2022; 186: 111845. https://doi.org/10.1016/j.postharvbio.2022.111845 DOI: https://doi.org/10.1016/j.postharvbio.2022.111845

Sripahco T, Khruengsai S, Pripdeevech P. Biodegradable antifungal films from nanocellulose-gellan gum incorporated with Anethum graveolens essential oil for bread packaging. Int J Biol Macromol 2023; 243: 125244. https://doi.org/10.1016/j.ijbiomac.2023.125244 DOI: https://doi.org/10.1016/j.ijbiomac.2023.125244

Ahmadi A, Ahmadi P, Sani MA, Ehsani A, Ghanbarzadeh B. Functional biocompatible nanocomposite films consisting of selenium and zinc oxide nanoparticles embedded in gelatin/cellulose nanofiber matrices. Int J Biol Macromol 2021; 175: 87-97. https://doi.org/10.1016/j.ijbiomac.2021.01.135 DOI: https://doi.org/10.1016/j.ijbiomac.2021.01.135

Ardebilchi Marand S, Almasi H, Ardebilchi Marand N. Chitosan-based nanocomposite films incorporated with NiO nanoparticles: Physicochemical, photocatalytic and antimicrobial properties. Int J Biol Macromol 2021; 190: 667-78. https://doi.org/10.1016/j.ijbiomac.2021.09.024 DOI: https://doi.org/10.1016/j.ijbiomac.2021.09.024

Wu M, Zhou Z, Yang J, Zhang M, Cai F, Lu P. ZnO nanoparticles stabilized oregano essential oil Pickering emulsion for functional cellulose nanofibrils packaging films with antimicrobial and antioxidant activity. Int J Biol Macromol 2021; 190: 433-40. https://doi.org/10.1016/j.ijbiomac.2021.08.210 DOI: https://doi.org/10.1016/j.ijbiomac.2021.08.210

Zhang W, Rhim JW. Titanium dioxide (TiO2) for the manufacture of multifunctional active food packaging films. Food Packag Shelf Life 2022; 31: 100806. https://doi.org/10.1016/j.fpsl.2021.100806 DOI: https://doi.org/10.1016/j.fpsl.2021.100806

Alizadeh Sani M, Maleki M, Eghbaljoo-Gharehgheshlaghi H, Khezerlou A, Mohammadian E, Liu Q, et al. Titanium dioxide nanoparticles as multifunctional surface-active materials for smart/active nanocomposite packaging films. Adv Coll Int Sci 2022; 300: 102593. https://doi.org/10.1016/j.cis.2021.102593 DOI: https://doi.org/10.1016/j.cis.2021.102593

Sharma S, Byrne M, Perera KY, Duffy B, Jaiswal AK, Jaiswal S. Active film packaging based on bio-nanocomposite TiO2 and cinnamon essential oil for enhanced preservation of cheese quality. Food Chem 2023; 405: 134798. https://doi.org/10.1016/j.foodchem.2022.134798 DOI: https://doi.org/10.1016/j.foodchem.2022.134798

Arezoo E, Mohammadreza E, Maryam M, Abdorreza MN. The synergistic effects of cinnamon essential oil and nano TiO2 on antimicrobial and functional properties of sago starch films. Int J Biol Macromol 2020; 157: 743-51. https://doi.org/10.1016/j.ijbiomac.2019.11.244 DOI: https://doi.org/10.1016/j.ijbiomac.2019.11.244

Riahi Z, Priyadarshi R, Rhim JW, Bagheri R. Gelatin-based functional films integrated with grapefruit seed extract and TiO2 for active food packaging applications. Food Hydrocoll 2021; 112. https://doi.org/10.1016/j.foodhyd.2020.106314 DOI: https://doi.org/10.1016/j.foodhyd.2020.106314

Liu Z, Du M, Liu H, Zhang K, Xu X, Liu K, et al. Chitosan films incorporating litchi peel extract and titanium dioxide nanoparticles and their application as coatings on watercored apples. Prog Org Coat 2021; 151: 106103. https://doi.org/10.1016/j.porgcoat.2020.106103 DOI: https://doi.org/10.1016/j.porgcoat.2020.106103

Fonseca J de M, Valencia GA, Soares LS, Dotto MER, Campos CEM, Moreira R de FPM, et al. Hydroxypropyl methylcellulose-TiO2 and gelatin-TiO2 nanocomposite films: Physicochemical and structural properties. Int J Biol Macromol 2020; 151: 944-56. https://doi.org/10.1016/j.ijbiomac.2019.11.082 DOI: https://doi.org/10.1016/j.ijbiomac.2019.11.082

Abdalla G, Mussagy CU, Sant’Ana Pegorin Brasil G, Scontri M, da Silva Sasaki JC, Su Y, et al. Eco-sustainable coatings based on chitosan, pectin, and lemon essential oil nanoemulsion and their effect on strawberry preservation. Int J Biol Macromol 2023; 249: 126016. https://doi.org/10.1016/j.ijbiomac.2023.126016 DOI: https://doi.org/10.1016/j.ijbiomac.2023.126016

Yan C, Li N, Zhang Y, Wei Y. Enrichment of cinnamaldehyde from Cinnamomum cassia by electroosmotic coupled particle-assisted solvent flotation. J Chromatogr A 2023; 1710: 464411. https://doi.org/10.1016/j.chroma.2023.464411 DOI: https://doi.org/10.1016/j.chroma.2023.464411

Sharma S, Barkauskaite S, Jaiswal AK, Jaiswal S. Essential oils as additives in active food packaging. Food Chem 2021; 343: 128403. https://doi.org/10.1016/j.foodchem.2020.128403 DOI: https://doi.org/10.1016/j.foodchem.2020.128403

Atarés L, Chiralt A. Essential oils as additives in biodegradable films and coatings for active food packaging. Trends Food Sci Technol 2016; 48: 51-62. https://doi.org/10.1016/j.tifs.2015.12.001 DOI: https://doi.org/10.1016/j.tifs.2015.12.001

Roy S, Rhim JW. Gelatin/agar-based functional film integrated with Pickering emulsion of clove essential oil stabilized with nanocellulose for active packaging applications. Colloids Surf A Physicochem Eng Asp 2021; 627. https://doi.org/10.1016/j.colsurfa.2021.127220 DOI: https://doi.org/10.1016/j.colsurfa.2021.127220

Niroula A, Gamot TD, Ooi CW, Dhital S. Biomolecule-based pickering food emulsions: Intrinsic components of food matrix, recent trends and prospects. Food Hydrocoll 2021; 112: 106303. https://doi.org/10.1016/j.foodhyd.2020.106303 DOI: https://doi.org/10.1016/j.foodhyd.2020.106303

Almasi H, Azizi S, Amjadi S. Development and characterization of pectin films activated by nanoemulsion and Pickering emulsion stabilized marjoram (Origanum majorana L.) essential oil. Food Hydrocoll 2020; 99: 105338. https://doi.org/10.1016/j.foodhyd.2019.105338 DOI: https://doi.org/10.1016/j.foodhyd.2019.105338

Yang S, Ban Z, Jin L, Chen C, Li L, Yi G, et al. Polyvinyl alcohol films incorporated with clove essential oil emulsions stabilized by soy protein isolate-derived amyloid fibrils: Fabrication, characterization, and its application for active packaging. Food Chem 2024; 440: 138245. https://doi.org/10.1016/j.foodchem.2023.138245 DOI: https://doi.org/10.1016/j.foodchem.2023.138245

Abd Hamid KH, Jayakumar T, Gunasegaran S, Mohd Azman NA. Fabrication and Characterization of Semi-refined Carrageenan Films Incorporated with TiO2 Nanoparticles. J Chem Eng Ind Biotechnol 2023; 9: 1-7. https://doi.org/10.15282/jceib.v9i1.9466 DOI: https://doi.org/10.15282/jceib.v9i1.9466

Wan Yahaya WA, Raja Ahmad RN, Mohd Azman NA. Characterization of Semi-Refined Carrageenan Reinforced with Cellulose Nanofiber Incorporated α-Tocopherol for Active Food Packaging Applications. Materials Sci Forum 2020; 1007: 154-9. https://doi.org/10.4028/www.scientific.net/MSF.1007.154 DOI: https://doi.org/10.4028/www.scientific.net/MSF.1007.154

Xu Y, Chu Y, Feng X, Gao C, Wu D, Cheng W, et al. Effects of zein stabilized clove essential oil Pickering emulsion on the structure and properties of chitosan-based edible films. Int J Biol Macromol 2020; 156: 111-9. https://doi.org/10.1016/j.ijbiomac.2020.04.027 DOI: https://doi.org/10.1016/j.ijbiomac.2020.04.027

Abd Hamid KH, Wan Yahaya WA, Mohd Saupy NAZ, Almajano MP, Mohd Azman NA. Semi‐refined carrageenan film incorporated with α‐tocopherol: Application in food model. J Food Process Preserv 2019; 43(5): e13937. https://doi.org/10.1111/jfpp.13937 DOI: https://doi.org/10.1111/jfpp.13937

Wan Yahaya WA, Azman NAM, Adam F, Subramaniam SD, Abd Hamid KH, Almajano MP. Exploring the Potential of Seaweed Derivatives for the Development of Biodegradable Plastics: A Comparative Study. Polymers (Basel) 2023; 15(13): 2884. https://doi.org/10.3390/polym15132884 DOI: https://doi.org/10.3390/polym15132884

Mehraie A, Khanzadi S, Hashemi M, Azizzadeh M. New coating containing chitosan and Hyssopus officinalis essential oil (emulsion and nanoemulsion) to protect shrimp (Litopenaeus vannamei) against chemical, microbial and sensory changes. Food Chem X 2023; 19: 100801. https://doi.org/10.1016/j.fochx.2023.100801 DOI: https://doi.org/10.1016/j.fochx.2023.100801

Otoni CG, Avena-Bustillos RJ, Olsen CW, Bilbao-Sáinz C, McHugh TH. Mechanical and water barrier properties of isolated soy protein composite edible films as affected by carvacrol and cinnamaldehyde micro and nanoemulsions. Food Hydrocoll 2016; 57: 72-79. https://doi.org/10.1016/j.foodhyd.2016.01.012 DOI: https://doi.org/10.1016/j.foodhyd.2016.01.012

Saedi S, Shokri M, Priyadarshi R, Rhim JW. Silver ion loaded 3-aminopropyl trimethoxysilane -modified Fe3O4 nanoparticles for the fabrication of carrageenan-based active packaging films. Colloids Surf B Biointerfaces 2021; 208: 112085. https://doi.org/10.1016/j.colsurfb.2021.112085 DOI: https://doi.org/10.1016/j.colsurfb.2021.112085

Farhan A, Hani NM. Characterization of edible packaging films based on semi-refined kappa-carrageenan plasticized with glycerol and sorbitol. Food Hydrocoll 2017; 64: 48-58. https://doi.org/10.1016/j.foodhyd.2016.10.034 DOI: https://doi.org/10.1016/j.foodhyd.2016.10.034

Farhan A, Hani NM. Active edible films based on semi-refined κ-carrageenan: Antioxidant and color properties and application in chicken breast packaging. Food Packag Shelf Life 2020; 24: 100476. https://doi.org/10.1016/j.fpsl.2020.100476 DOI: https://doi.org/10.1016/j.fpsl.2020.100476

Yong H, Liu J, Kan J, Liu J. Active/intelligent packaging films developed by immobilizing anthocyanins from purple sweetpotato and purple cabbage in locust bean gum, chitosan and κ-carrageenan-based matrices. Int J Biol Macromol 2022; 211: 238-48. https://doi.org/10.1016/j.ijbiomac.2022.05.046 DOI: https://doi.org/10.1016/j.ijbiomac.2022.05.046

Kanmani P, Rhim JW. Development and characterization of carrageenan/grapefruit seed extract composite films for active packaging. Int J Biol Macromol 2014; 68: 258-66. https://doi.org/10.1016/j.ijbiomac.2014.05.011 DOI: https://doi.org/10.1016/j.ijbiomac.2014.05.011

Razali MH, Ismail NA, Mat Amin KA. Titanium dioxide nanotubes incorporated gellan gum bio-nanocomposite film for wound healing: Effect of TiO2 nanotubes concentration. Int J Biol Macromol 2020; 153: 1117-35. https://doi.org/10.1016/j.ijbiomac.2019.10.242 DOI: https://doi.org/10.1016/j.ijbiomac.2019.10.242

Candra A, Tsai HC, Saragi IR, Hu CC, Yu WT, Krishnamoorthi R, et al. Fabrication and characterization of hybrid eco-friendly high methoxyl pectin/gelatin/ TiO2/curcumin (PGTC) nanocomposite biofilms for salmon fillet packaging. Int J Biol Macromol 2023; 232: 123423. https://doi.org/10.1016/j.ijbiomac.2023.123423 DOI: https://doi.org/10.1016/j.ijbiomac.2023.123423

Basumatary IB, Mukherjee A, Kumar S. Chitosan-based composite films containing eugenol nanoemulsion, ZnO nanoparticles and Aloe vera gel for active food packaging. Int J Biol Macromol 2023; 242: 124826. https://doi.org/10.1016/j.ijbiomac.2023.124826 DOI: https://doi.org/10.1016/j.ijbiomac.2023.124826

Perera KY, Sharma S, Duffy B, Pathania S, Jaiswal AK, Jaiswal S. An active biodegradable layer-by-layer film based on chitosan-alginate-TiO2 for the enhanced shelf life of tomatoes. Food Packag Shelf Life 2022; 34: 100971. https://doi.org/10.1016/j.fpsl.2022.100971 DOI: https://doi.org/10.1016/j.fpsl.2022.100971

Zhao R, Guan W, Zhou X, Lao M, Cai L. The physiochemical and preservation properties of anthocyanidin/chitosan nanocomposite-based edible films containing cinnamon-perilla essential oil pickering nanoemulsions. LWT 2022; 153: 112506. https://doi.org/10.1016/j.lwt.2021.112506 DOI: https://doi.org/10.1016/j.lwt.2021.112506

Dash KK, Ali NA, Das D, Mohanta D. Thorough evaluation of sweet potato starch and lemon-waste pectin based-edible films with nano-titania inclusions for food packaging applications. Int J Biol Macromol 2019; 139: 449-58. https://doi.org/10.1016/j.ijbiomac.2019.07.193 DOI: https://doi.org/10.1016/j.ijbiomac.2019.07.193

Roy S, Rhim JW. Carrageenan/agar-based functional film integrated with zinc sulfide nanoparticles and Pickering emulsion of tea tree essential oil for active packaging applications. Int J Biol Macromol 2021; 193: 2038-46. https://doi.org/10.1016/j.ijbiomac.2021.11.03 DOI: https://doi.org/10.1016/j.ijbiomac.2021.11.035

Fan S, Wang D, Wen X, Li X, Fang F, Richel A, et al. Incorporation of cinnamon essential oil-loaded Pickering emulsion for improving antimicrobial properties and control release of chitosan/gelatin films. Food Hydrocoll 2023; 138: 108438. https://doi.org/10.1016/j.foodhyd.2022.108438 DOI: https://doi.org/10.1016/j.foodhyd.2022.108438

Shen Y, Ni ZJ, Thakur K, Zhang JG, Hu F, Wei ZJ. Preparation and characterization of clove essential oil loaded nanoemulsion and pickering emulsion activated pullulan-gelatin based edible film. Int J Biol Macromol 2021; 181: 528-39. https://doi.org/10.1016/j.ijbiomac.2021.03.133 DOI: https://doi.org/10.1016/j.ijbiomac.2021.03.133

Li Y, Jiang Y, Liu F, Ren F, Zhao G, Leng X. Fabrication and characterization of TiO2/whey protein isolate nanocomposite film. Food Hydrocoll 2011; 25(5): 1098-104. https://doi.org/10.1016/j.foodhyd.2010.10.006 DOI: https://doi.org/10.1016/j.foodhyd.2010.10.006

Fasihi H, Fazilati M, Hashemi M, Noshirvani N. Novel carboxymethyl cellulose-polyvinyl alcohol blend films stabilized by Pickering emulsion incorporation method. Carbohydr Polym 2017; 167: 79-89. https://doi.org/10.1016/j.carbpol.2017.03.017 DOI: https://doi.org/10.1016/j.carbpol.2017.03.017

Zhao R, Guan W, Zheng P, Tian F, Zhang Z, Sun Z, et al. Development of edible composite film based on chitosan nanoparticles and their application in packaging of fresh red sea bream fillets. Food Control 2022; 132: 108545. https://doi.org/10.1016/j.foodcont.2021.108545 DOI: https://doi.org/10.1016/j.foodcont.2021.108545

Hasheminya SM, Dehghannya J. Development and characterization of novel edible films based on Cordia dichotoma gum incorporated with Salvia mirzayanii essential oil nanoemulsion. Carbohydr Polym 2021; 257: 117606. https://doi.org/10.1016/j.carbpol.2020.117606 DOI: https://doi.org/10.1016/j.carbpol.2020.117606

Pereda M, Amica G, Marcovich NE. Development and characterization of edible chitosan/olive oil emulsion films. Carbohydr Polym 2012; 87(2): 1318-25. https://doi.org/10.1016/j.carbpol.2011.09.019 DOI: https://doi.org/10.1016/j.carbpol.2011.09.019

Liu J, Song F, Chen R, Deng G, Chao Y, Yang Z, et al. Effect of cellulose nanocrystal-stabilized cinnamon essential oil Pickering emulsions on structure and properties of chitosan composite films. Carbohydr Polym 2022; 275: 118704. https://doi.org/10.1016/j.carbpol.2021.118704 DOI: https://doi.org/10.1016/j.carbpol.2021.118704

Alizadeh Sani M, Tavassoli M, Salim SA, Azizi-lalabadi M, McClements DJ. Development of green halochromic smart and active packaging materials: TiO2 nanoparticle- and anthocyanin-loaded gelatin/κ-carrageenan films. Food Hydrocoll 2022; 124: 107324. https://doi.org/10.1016/j.foodhyd.2021.107324 DOI: https://doi.org/10.1016/j.foodhyd.2021.107324

Kim S, Baek SK, Song K Bin. Physical and antioxidant properties of alginate films prepared from Sargassum fulvellum with black chokeberry extract. Food Packag Shelf Life 2018; 18: 157-63. https://doi.org/10.1016/j.fpsl.2018.11.008 DOI: https://doi.org/10.1016/j.fpsl.2018.11.008

Han Y, Zhou M, McClements DJ, Liu F, Cheng C, Xiong J, et al. Investigation of a novel smart and active packaging materials: Nanoparticle-filled carrageenan-based composite films. Carbohydr Polym 2023; 301: 120331. https://doi.org/10.1016/j.carbpol.2022.120331 DOI: https://doi.org/10.1016/j.carbpol.2022.120331

Downloads

Published

2024-02-02

How to Cite

Abd Hamid, K. H. ., Ajit, A. ., Asmawi, A. A. ., Arzmi, M. H. ., & Mohd Azman, N. A. . (2024). Physicochemical Properties of Films from Semirefined Carrageenan/TiO2 Integrated with Cinnamaldehyde Pickering Emulsion for Active Food Packaging. Journal of Research Updates in Polymer Science, 13, 1–10. https://doi.org/10.6000/1929-5995.2024.13.01

Issue

Section

Articles