Polymer Shaped Punches Produces with Fused Filament Fabrication to Improve Cup Accuracy in Sheet Metal Forming

Authors

  • L. Giorleo Advanced Prototyping Laboratory, Department of Mechanical and Industrial Engineer, University of Brescia, Via Branze 38, Brescia, Italy
  • I.K. Deniz Advanced Prototyping Laboratory, Department of Mechanical and Industrial Engineer, University of Brescia, Via Branze 38, Brescia, Italy
  • M. Ravelli Advanced Prototyping Laboratory, Department of Mechanical and Industrial Engineer, University of Brescia, Via Branze 38, Brescia, Italy

DOI:

https://doi.org/10.6000/1929-5995.2024.13.18

Keywords:

Rapid tooling, polymer, additive manufacturing, sheet metal forming

Abstract

Rapid tooling has become an effective solution for reducing time and costs in tool production. In sheet metal forming, polymer tools produced via additive manufacturing offer performance comparable to traditional tools. However, a key challenge in this area is compensating for the radial expansion of polymer tools during the forming process, which leads to reduced accuracy in the produced parts and limits the achievable forming depth. To address this issue, the authors of this study proposed a novel punch design aimed at containing radial expansion, thereby enabling greater drawing depth and improved part accuracy. Different punch geometries were designed with a re-entrant angle varying between 150° and 180°. Numerical simulations were conducted to evaluate the optimal geometry, identifying the 160° angle as the best option to compensate for radial expansion and reduce punch load. Experimental tests were then performed to verify the numerical results, demonstrating the potential of this new design producing cups with higher drawing depth and best radial accuracy.

References

Parandoush P, Lin D. A review on additive manufacturing of polymer-fiber composites. Composite Structures 2017; 182: 36-53. https://doi.org/10.1016/j.compstruct.2017.08.088 DOI: https://doi.org/10.1016/j.compstruct.2017.08.088

Ohtsuka T. Corrosion protection of steels by conducting polymer coating. International Journal of Corrosion 2012; 2012(1): 915090. https://doi.org/10.1155/2012/915090 DOI: https://doi.org/10.1155/2012/915090

Ligon SC, Liska R, Stampfl J, Gurr M, Mülhaupt R. Polymers for 3D printing and customized additive manufacturing. Chemical Reviews 2017; 117(15): 10212-10290. https://doi.org/10.1021/acs.chemrev.7b00074 DOI: https://doi.org/10.1021/acs.chemrev.7b00074

Rajak DK, Pagar DD, Menezes PL, Linul E. Fiber-r einforced polymer composites: Manufacturing, properties, and applications. Polymers 2019; 11(10): 1667. https://doi.org/10.3390/polym11101667 DOI: https://doi.org/10.3390/polym11101667

Tan LJ, Zhu W, Zhou K. Recent progress on polymer materials for additive manufacturing. Advanced Functional Materials 2020; 30(43): 2003062. https://doi.org/10.1002/adfm.202003062 DOI: https://doi.org/10.1002/adfm.202003062

Giorleo L. Deep Drawing of AISI 304 blanks with polymer punches produced by additive manufacturing: effects of process scalability. Applied Sciences 2022; 12(24): 12716. https://doi.org/10.3390/app122412716 DOI: https://doi.org/10.3390/app122412716

Patil A, Patel A, Purohit R. An overview of polymeric materials for automotive applications. Materials Today: Proceedings 2017; 4(2): 3807-3815. https://doi.org/10.1016/j.matpr.2017.02.278 DOI: https://doi.org/10.1016/j.matpr.2017.02.278

Dyer WE, Kumru B. Polymers as Aerospace Structural Components: How to Reach Sustainability? Macromolecular Chemistry and Physics 2023; 224(24): 2300186. https://doi.org/10.1002/macp.202300186 DOI: https://doi.org/10.1002/macp.202300186

Das TK, Prusty S. Review on conducting polymers and their applications. Polymer-Plastics Technology and Engineering 2012; 51(14): 1487-1500. https://doi.org/10.1080/03602559.2012.710697 DOI: https://doi.org/10.1080/03602559.2012.710697

Jagur‐Grodzinski J. Polymers for tissue engineering, medical devices, and regenerative medicine. Concise general review of recent studies. Polymers for Advanced Technologies 2006; 17(6): 395-418. https://doi.org/10.1002/pat.729 DOI: https://doi.org/10.1002/pat.729

Lebedev V, Miroshnichenko D, Vytrykush N, Pyshyev S, Masikevych A, Filenko O, Lysenko L. Novel biodegradable polymers modified by humic acids. Materials Chemistry and Physics 2024; 313: 128778. https://doi.org/10.1016/j.matchemphys.2023.128778 DOI: https://doi.org/10.1016/j.matchemphys.2023.128778

Ullah I, Wasif M, Tufail M. Analysis of shrinkage and dimensional accuracy of additively manufactured tooling for the composite manufacturing. International Journal on Interactive Design and Manufacturing (IJIDeM) 2024; 18(2): 673-684. https://doi.org/10.1007/s12008-023-01640-x DOI: https://doi.org/10.1007/s12008-023-01640-x

Islam MA, Mobarak MH, Rimon MIH, Al Mahmud MZ, Ghosh J, Ahmed MMS, Hossain N. Additive manufacturing in polymer research: Advances, synthesis, and applications. Polymer Testing 2024; 108364. https://doi.org/10.1016/j.polymertesting.2024.108364 DOI: https://doi.org/10.1016/j.polymertesting.2024.108364

Masood SH, Song WQ. Development of new metal/polymer materials for rapid tooling using fused deposition modelling. Materials & Design 2004; 25(7): 587-594. https://doi.org/10.1016/j.matdes.2004.02.009 DOI: https://doi.org/10.1016/j.matdes.2004.02.009

King D, Tansey T. Alternative materials for rapid tooling. Journal of Materials Processing Technology 2002; 121(2-3): 313-317. https://doi.org/10.1016/S0924-0136(01)01145-1 DOI: https://doi.org/10.1016/S0924-0136(01)01145-1

Giorleo L, Ceretti E. Aluminium deep drawing with additive manufacturing polymer punches: analysis of performance in small batch production. The International Journal of Advanced Manufacturing Technology 2023; 128(5-6): 2175-2185. https://doi.org/10.1007/s00170-023-12066-w DOI: https://doi.org/10.1007/s00170-023-12066-w

Equbal A, Sood AK, Shamim M. Rapid tooling: A major shift in tooling practice. Manufacturing and Industrial Engineering 2015; 14(3-4). https://doi.org/10.12776/mie.v14i3-4.325 DOI: https://doi.org/10.12776/mie.v14i3-4.325

Liow YH, Ismail KI, Yap TC. Tribology Behavior of In-Situ FDM 3D Printed Glass Fibre-Reinforced Thermoplastic Composites. Journal of Research Updates in Polymer Science 2024; 13: 86-93. https://doi.org/10.6000/1929-5995.2024.13.10 DOI: https://doi.org/10.6000/1929-5995.2024.13.10

Giorleo L, Ceretti E. Deep drawing punches produced using fused filament fabrication technology: Performance evaluation. Journal of Manufacturing Processes 2022; 84: 1-9. https://doi.org/10.1016/j.jmapro.2022.09.054 DOI: https://doi.org/10.1016/j.jmapro.2022.09.054

Ceretti E, Giorleo L. Stainless steel deep drawing with polymer punches produced with Fused Filament Fabrication technology: effect of tool orientation on the printing plate. Materials Research Proceedings, 25. https://doi.org/10.21741/9781644902417-42 DOI: https://doi.org/10.21741/9781644902417-42

Bergweiler G, Fiedler F, Shaukat A, Löffler B. Experimental investigation of dimensional precision of deep drawn cups using direct polymer additive tooling. Journal of Manufacturing and Materials Processing 2020; 5(1): 3. https://doi.org/10.3390/jmmp5010003 DOI: https://doi.org/10.3390/jmmp5010003

Athale M, Park T, Hahnlen R, Pourboghrat F. Design, performance, and cost savings of using GF-PC additively manufactured tooling for stamping of HSS 590 sheet metal. Journal of Manufacturing Processes 2023; 101: 1-14. https://doi.org/10.1016/j.jmapro.2023.05.072 DOI: https://doi.org/10.1016/j.jmapro.2023.05.072

Park Y, Colton JS. Failure analysis of rapid prototyped tooling in sheet metal forming—cylindrical cup drawing. J Manuf Sci Eng 2005; 127(1): 126-137. https://doi.org/10.1115/1.1828054 DOI: https://doi.org/10.1115/1.1828054

Schuh G, Bergweiler G, Bickendorf P, Fiedler F, Colag C. Sheet metal forming using additively manufactured polymer tools. Procedia CIRP 2020; 93: 20-25. https://doi.org/10.1016/j.procir.2020.04.013 DOI: https://doi.org/10.1016/j.procir.2020.04.013

Frohn-Sörensen P, Geueke M, Engel B, Löffler B, Bickendorf P, Asimi A, Schuh G. Design for 3D printed tools: mechanical material properties for direct polymer additive tooling. Polymers 2022; 14(9): 1694. https://doi.org/10.3390/polym14091694 DOI: https://doi.org/10.3390/polym14091694

Tanveer MQ, Mishra G, Mishra S, Sharma R. Effect of infill pattern and infill density on mechanical behaviour of FDM 3D printed Parts-a current review. Materials Today: Proceedings 2022; 62: 100-108. https://doi.org/10.1016/j.matpr.2022.02.310 DOI: https://doi.org/10.1016/j.matpr.2022.02.310

Suteja J. Effect of infill pattern, infill density, and infill angle on the printing time and filament length of 3D printing. Jurnal Rekayasa Mesin 1 2021; 2(1): 145-152. https://doi.org/10.21776/ub.jrm.2021.012.01.16 DOI: https://doi.org/10.21776/ub.jrm.2021.012.01.16

Mishra PK, Senthil P, Adarsh S, Anoop MS. An investigation to study the combined effect of different infill pattern and infill density on the impact strength of 3D printed polylactic acid parts. Composites Communications 2021; 24: 100605. https://doi.org/10.1016/j.coco.2020.100605 DOI: https://doi.org/10.1016/j.coco.2020.100605

Gunasekaran KN, Aravinth V, Kumaran CM, Madhankumar K, Kumar SP. Investigation of mechanical properties of PLA printed materials under varying infill density. Materials Today: Proceedings 2021; 45: 1849-1856. https://doi.org/10.1016/j.matpr.2020.09.041 DOI: https://doi.org/10.1016/j.matpr.2020.09.041

Pyl L, Kalteremidou KA, Van Hemelrijck D. Exploration of specimen geometry and tab configuration for tensile testing exploiting the potential of 3D printing freeform shape continuous carbon fibre-reinforced nylon matrix composites. Polymer Testing 2018; 71: 318-328. https://doi.org/10.1016/j.polymertesting.2018.09.022 DOI: https://doi.org/10.1016/j.polymertesting.2018.09.022

Papa I, Silvestri AT, Ricciardi MR, Lopresto V, Squillace A. Effect of fibre orientation on novel continuous 3d-printed fibre-reinforced composites. Polymers 2021; 13: 2524. https://doi.org/10.3390/polym13152524 DOI: https://doi.org/10.3390/polym13152524

Meng H, Sui GX, Xie GY, Yang R. Friction and wear behavior of carbon nanotubes reinforced polyamide 6 composites under dry sliding and water lubricated condition. Composites Science and Technology 2009; 69(5): 606-611. https://doi.org/10.1016/j.compscitech.2008.12.004 DOI: https://doi.org/10.1016/j.compscitech.2008.12.004

Downloads

Published

2024-10-17

How to Cite

Giorleo, L. ., Deniz, I. ., & Ravelli, M. . (2024). Polymer Shaped Punches Produces with Fused Filament Fabrication to Improve Cup Accuracy in Sheet Metal Forming. Journal of Research Updates in Polymer Science, 13, 165–174. https://doi.org/10.6000/1929-5995.2024.13.18

Issue

Section

Articles