Thermal Cure Kinetics of Modified Cold-Setting Melamine-Urea-Formaldehyde Resins with Liquid Thickeners

Authors

  • Kyle J. Sereni Department of Wood and Paper Science, Kyungpook National University, Daegu, 41566, Republic of Korea https://orcid.org/0009-0008-3737-7078
  • Jaewook Lee Department of Wood and Paper Science, Kyungpook National University, Daegu, 41566, Republic of Korea
  • Byung-Dae Park Department of Wood and Paper Science, Kyungpook National University, Daegu, 41566, Republic of Korea https://orcid.org/0000-0002-9802-7855

DOI:

https://doi.org/10.6000/1929-5995.2024.13.28

Keywords:

Cure Kinetics, Cold-Setting MUF Resins, Thickener, Reaction Model, Additives

Abstract

Cold-setting melamine-urea-formaldehyde (CS-MUF) resins being used as adhesives for manufacturing laminated wood timber products require to have a proper viscosity using thickener or filler. However, studies on thermal curing kinetics and behavior of the modified CS-MUF resins with liquid thickener are limited. Hence, this study focuses on the thermal cure kinetics of the modified CS-MUF resins with two liquid thickeners at three addition levels to obtain the resin viscosities of 4,000 mPa.s, 8,000 mPa.s and 12,000 mPa.s. Differential scanning calorimetry (DSC) was used to estimate cure kinetics of the modified CS-MUF resins using two analysis methods: 1) model-fitting (MFT) method containing the Kissinger (KSNG) analysis, and 2) model-free (MFK) methods containing Kissinger-Akahira-Sunose (KAS) analysis, and nonlinear isoconversional (VYA) analysis. The KSNG, KAS, and VYA analysis showed that all modified CS-MUF resins followed very similar curing behavior with small difference, except Resin #2 which followed the autocatalytic reaction model based on the Málek method. These results suggest that liquid thickeners increase to a proper viscosity of CS-MUF resins without major impact to their curing behavior.

References

Hunt CG, Dunky M. Analysis of Future Prospects and Opportunities for Wood Adhesives: A Review. For Prod J 2022; 72(s2): 14-22. https://doi.org/10.13073/fpj-d-23-00011 DOI: https://doi.org/10.13073/FPJ-D-23-00011

Lee J, Park BD. Thermal cure kinetics of cold-setting melamine-urea-formaldehyde resins with high melamine content. J Therm Anal Calorim 2023; 148(13): 6407-6422. https://doi.org/10.1007/s10973-023-12167-4

Anisuzzaman SM, Bono A, Krishnaiah D, Ismail NM, Mansuit H. The performance of Melamine Urea Formaldehyde (MUF) based particleboard with wheat flour as filler. Jurnal Teknologi (Sciences and Engineering) 2014; 68(1): 61-69. https://doi.org/10.11113/jt.v68.2026 DOI: https://doi.org/10.11113/jt.v68.2026

Wibowo ES, Park BD. Enhancing adhesion of thermosetting urea-formaldehyde resins by preventing the formation of H-bonds with multi-reactive melamine. Journal of Adhesion 2022; 98(3): 257-285 https://doi.org/10.1080/00218464.2020.1830069

Zhang J, Wang X, Zhang S, Gao Q, Li J. Effects of melamine addition stage on the performance and curing behavior of melamine-urea-formaldehyde (MUF) resin. Bioresources 2013; 8(4): 5500-5514 https://doi.org/10.15376/biores.8.4.5500-5514 DOI: https://doi.org/10.15376/biores.8.4.5500-5514

Jeong B, Park BD, Causin V. Influence of synthesis method and melamine content of urea-melamine-formaldehyde resins to their features in cohesion, interphase, and adhesion performance. Journal of Industrial and Engineering Chemistry 2019; 79: 87-96. https://doi.org/10.1016/j.jiec.2019.05.017 DOI: https://doi.org/10.1016/j.jiec.2019.05.017

Nuryawan A, Park BD, A. P. Singh. Comparison of thermal curing behavior of liquid and solid urea-formaldehyde resins with different formaldehyde/urea mole ratios. J Therm Anal Calorim 2014; 118(1): 397-404. https://doi.org/10.1007/s10973-014-3946-5 DOI: https://doi.org/10.1007/s10973-014-3946-5

Kandelbauer A, Wuzella G, Mahendran A, Taudes I, Widsten P. Model-free kinetic analysis of melamine-formaldehyde resin cure. Chemical Engineering Journal 2009; 152(2-3): 556-565. https://doi.org/10.1016/j.cej.2009.05.027 DOI: https://doi.org/10.1016/j.cej.2009.05.027

Muraleedharan K, Alikutty P, Abdul Mujeeb VM, Sarada K. Kinetic Studies on the Thermal Dehydration and Degradation of Chitosan and Citralidene Chitosan. J Polym Environ 2015; 23(1): 1-10. https://doi.org/10.1007/s10924-014-0665-8 DOI: https://doi.org/10.1007/s10924-014-0665-8

Kissinger HE. Reaction Kinetics in Differential Thermal Analysis. Anal Chem 1957; 29(11): 1702-1706. https://doi.org/10.1021/ac60131a045 DOI: https://doi.org/10.1021/ac60131a045

Aboulkas A, El Harfi K, El Bouadili A, Benchanaa M, Mokhlisse A, Outzourit A. Kinetics of co-pyrolysis of tarfaya (Morocco) oil shale with high-density polyethylene. Oil Shale 2007; 24(1): 15-33. https://doi.org/10.3176/oil.2007.1.04 DOI: https://doi.org/10.3176/oil.2007.1.04

Vyazovkin S, Dollimore D. Linear and nonlinear procedures in isoconversional computations of the activation energy of nonisothermal reactions in solids. J Chem Inf Comput Sci 1996; 36(1): 42-45. https://doi.org/10.1021/ci950062m DOI: https://doi.org/10.1021/ci950062m

Vyazovkin S. Evaluation of activation energy of thermally stimulated solid-state reactions under arbitrary variation of temperature. J Comput Chem 1997; 18(3): 393-402. https://doi.org/10.1002/(SICI)1096-987X(199702)18:3<393::AID-JCC9>3.0.CO;2-P DOI: https://doi.org/10.1002/(SICI)1096-987X(199702)18:3<393::AID-JCC9>3.0.CO;2-P

Wibowo ES, Park BD. Effects of wheat flour levels on the thermal curing behavior of Urea-Formaldehyde and Phenol-Formaldehyde resins. Int J Adhes Adhes 2024; 132. https://doi.org/10.1016/j.ijadhadh.2024.103694 DOI: https://doi.org/10.1016/j.ijadhadh.2024.103694

Wibowo ES, Park BD. Cure kinetics of low-molar-ratio urea-formaldehyde resins reinforced with modified nanoclay using different kinetic analysis methods. Thermochim Acta 2020; 686. https://doi.org/10.1016/j.tca.2020.178552 DOI: https://doi.org/10.1016/j.tca.2020.178552

Lei H, Frazier CE. Curing behavior of melamine-urea-formaldehyde (MUF) resin adhesive. Int J Adhes Adhes 2015; 62: 40-44. https://doi.org/10.1016/j.ijadhadh.2015.06.013 DOI: https://doi.org/10.1016/j.ijadhadh.2015.06.013

Cai X, Riedl B, Wan H, Zhang SY, Wang XM. A study on the curing and viscoelastic characteristics of melamine-urea-formaldehyde resin in the presence of aluminium silicate nanoclays. Compos Part A Appl Sci Manuf 2010; 41(5): 604-611. https://doi.org/10.1016/j.compositesa.2010.01.007 DOI: https://doi.org/10.1016/j.compositesa.2010.01.007

Siimer K, Kaljuvee T, Christjanson P. Thermal behaviour of urea-formaldehyde resins during curing. J Therm Anal Calorim 2003; 72(2): 607-617. https://doi.org/10.1023/A:1024590019244 DOI: https://doi.org/10.1023/A:1024590019244

Senum GI, Yang RT. Rational approximations of the integral of the Arrhenius function. Journal of Thermal Analysis 1977; 11(3): 445-447. https://doi.org/10.1007/BF01903696 DOI: https://doi.org/10.1007/BF01903696

Lee J, Park BD. Thermal cure kinetics of cold-setting melamine-urea-formaldehyde resins with high melamine content. J Therm Anal Calorim 2023; 148(13): 6407-6422. https://doi.org/10.1007/s10973-023-12167-4 DOI: https://doi.org/10.1007/s10973-023-12167-4

Wibowo ES, Park BD. Enhancing adhesion of thermosetting urea-formaldehyde resins by preventing the formation of H-bonds with multi-reactive melamine. Journal of Adhesion 2022; 98(3): 257-285 https://doi.org/10.1080/00218464.2020.1830069 DOI: https://doi.org/10.1080/00218464.2020.1830069

Kissinger VS. Method in Kinetics of Materials: Things to Beware and Be Aware of. Molecules 2020; 25(12). https://doi.org/10.1016/j.tca.2012.04.008 DOI: https://doi.org/10.3390/molecules25122813

Blaine RL, Kissinger HE. Homer Kissinger and the Kissinger equation. Thermochim Acta [Internet] 2012; 540: 1-6. https://doi.org/10.1016/j.tca.2012.04.008 DOI: https://doi.org/10.1016/j.tca.2012.04.008

Sánchez-Jiménez PE, Criado JM, Pérez-Maqueda LA. Kissinger kinetic analysis of data obtained under different heating schedules. J Therm Anal Calorim 2008; 94: 427-432. https://doi.org/10.1007/s10973-008-9200-2 DOI: https://doi.org/10.1007/s10973-008-9200-2

Zhang B, Wu Z, Liang J, et al. Effects of polyethylene glycol on the flexibility of cold-setting melamine-urea-formaldehyde resin. Eur J Wood Prod 2022; 80: 975-984. https://doi.org/10.1007/s00107-022-01801-x DOI: https://doi.org/10.1007/s00107-022-01801-x

Frihart CR, Wood Adhesion and Adhesives. In: Handbook of Wood Chemistry and Wood Composites. Chapter 9. Ed. Roger M. Rowell, CRC Press, New York, USA 2005; pp. 215-278. https://sci-hub.st/10.1201/b12487-13

Downloads

Published

2024-12-27

How to Cite

Sereni, K. J. ., Lee, J. ., & Park, B.-D. . (2024). Thermal Cure Kinetics of Modified Cold-Setting Melamine-Urea-Formaldehyde Resins with Liquid Thickeners. Journal of Research Updates in Polymer Science, 13, 272–281. https://doi.org/10.6000/1929-5995.2024.13.28

Issue

Section

Articles