Review on Air Cathode in Li-Air Batteries

Authors

  • Zhaoru Zha Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China
  • Cai Shen Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China
  • Deyu Wang Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China
  • Weiqiang Han Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China

DOI:

https://doi.org/10.6000/1929-6002.2013.02.04.1

Keywords:

Carbon material, porosity, capacity, catalyst, round-trip efficiency

Abstract

Lithium-air (Li-air) battery is a promising electrochemical system with unprecedented high energy density. However, many problems and challenges prevent its wide scale application and commercialization. Low oxygen diffusion rates and large voltage gap are two of the main problems in Li-air battery. These two problems are related to the materials used in the air cathode such as porous carbon materials and metallic catalysts. This review seeks to discuss various materials used in the air cathode for Li air batteries. Mechanism of reaction in air cathode will be elucidated and discussed.

Author Biographies

Zhaoru Zha, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China



Weiqiang Han, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China



References

Girishkumar G, McCloskey B, Luntz AC, S. Swanson aWW. Lithium-Air Battery: Promise and Challenges. J Phys Chem Lett 2010; 1: 2193-203. http://dx.doi.org/10.1021/jz1005384 DOI: https://doi.org/10.1021/jz1005384

Takeshi Ogasawara, Aure´lie De´bart, Michael Holzapfel, Petr Nova´ k aPGB. Rechargeable Li2O2 electrode for lithium batterirs. J Am Chem Soc 2006; 128: 1390-3. http://dx.doi.org/10.1021/ja056811q DOI: https://doi.org/10.1021/ja056811q

Hun-Gi Jung JH, Park J-B, Sun Y-K, Scrosati B. An improved high-performance lithium–air battery. Nat Chem 2012; 4: 579-85. http://dx.doi.org/10.1038/nchem.1376 DOI: https://doi.org/10.1038/nchem.1376

He P, Wang Y, Zhou H. A Li-air fuel cell with recycle aqueous electrolyte for improved stability. Electrochem Commun 2010; 12(12): 1686-9. http://dx.doi.org/10.1016/j.elecom.2010.09.025 DOI: https://doi.org/10.1016/j.elecom.2010.09.025

Kumar B, Kumar J, Leese R, Fellner JP, Rodrigues SJ, Abraham KM. A Solid-State, Rechargeable, Long Cycle Life Lithium–Air Battery. J Electrochem Soc 2010; 157(1): A50. http://dx.doi.org/10.1149/1.3256129 DOI: https://doi.org/10.1149/1.3256129

Wang Y, Zhou H. A lithium-air battery with a potential to continuously reduce O2 from air for delivering energy. J Power Sources 2010; 195(1): 358-61. http://dx.doi.org/10.1016/j.jpowsour.2009.06.109 DOI: https://doi.org/10.1016/j.jpowsour.2009.06.109

Zhang T, Imanishi N, Shimonishi Y, Hirano A, Takeda Y, Yamamoto O, et al. A novel high energy density rechargeable lithium/air battery. Chem Commun 2010; 46(10): 1661. http://dx.doi.org/10.1039/b920012f DOI: https://doi.org/10.1039/b920012f

Zhang T, Imanishi N, Hasegawa S, Hirano A, Xie J, Takeda Y, et al. Water-Stable Lithium Anode with the Three-Layer Construction for Aqueous Lithium–Air Secondary Batteries. Electrochem. Solid-State Lett 2009; 12(7): A132. DOI: https://doi.org/10.1149/1.3125285

Christensen J, Albertus P, Sanchez-Carrera RS, Lohmann T, Kozinsky B, Liedtke R, et al. A Critical Review of Li/Air Batteries. J Electrochem Soc 2012; 159(2): R1. http://dx.doi.org/10.1149/2.030301jes DOI: https://doi.org/10.1149/2.086202jes

Kraytsberg A, Ein-Eli Y. Review on Li–air batteries—Opportunities, limitations and perspective. J Power Sources 2011; 196(3): 886-93. http://dx.doi.org/10.1016/j.jpowsour.2010.09.031 DOI: https://doi.org/10.1016/j.jpowsour.2010.09.031

Trahan MJ, Mukerjee S, Plichta EJ, Hendrickson MA, Abraham KM. Studies of Li-Air Cells Utilizing Dimethyl Sulfoxide-Based Electrolyte. J Electrochem Soc 2012; 160(2): A259-A67. http://dx.doi.org/10.1149/2.048302jes DOI: https://doi.org/10.1149/2.048302jes

Wang J, Li Y, Sun X. Challenges and opportunities of nanostructured materials for aprotic rechargeable lithium–air batteries. Nano Energy 2013; 2(4): 443-67. http://dx.doi.org/10.1016/j.nanoen.2012.11.014 DOI: https://doi.org/10.1016/j.nanoen.2012.11.014

Hendrickson EJPaMA. Elucidating the Mechanism of Oxygen Reduction for Lithium-Air Battery Applications. J Phys Chem C 2009; 113(46): 20127-34. http://dx.doi.org/10.1021/jp908090s DOI: https://doi.org/10.1021/jp908090s

Lu Y-C, Gasteiger HA, Crumlin E, McGuire R, Shao-Horn Y. Electrocatalytic Activity Studies of Select Metal Surfaces and Implications in Li-Air Batteries. J Electrochem Soc 2010; 157(9): A1016. http://dx.doi.org/10.1149/1.3462981 DOI: https://doi.org/10.1149/1.3462981

Kuboki T, Okuyama T, Ohsaki T, Takami N. Lithium-air batteries using hydrophobic room temperature ionic liquid electrolyte. J Power Sources 2005; 146(1-2): 766-9. http://dx.doi.org/10.1016/j.jpowsour.2005.03.082 DOI: https://doi.org/10.1016/j.jpowsour.2005.03.082

Xiao J, Wang D, Xu W, Wang D, Williford RE, Liu J, et al. Optimization of Air Electrode for Li/Air Batteries. J Electrochem Soc 2010; 157(4): A487. http://dx.doi.org/10.1149/1.3314375 DOI: https://doi.org/10.1149/1.3314375

Zhang SS, Foster D, Read J. Discharge characteristic of a non-aqueous electrolyte Li/O2 battery. J Electrochem Soc 2010; 195(4): 1235-40. DOI: https://doi.org/10.1016/j.jpowsour.2009.08.088

Xiao J, Mei D, Li X, Xu W, Wang D, Graff GL, et al. Hierarchically Porous Graphene as a Lithium–Air Battery Electrode Nano Lett 2011; 11(11): 5071-8. http://dx.doi.org/10.1021/nl203332e DOI: https://doi.org/10.1021/nl203332e

Freunberger SA, Chen Y, Drewett NE, Hardwick LJ, Bardé F, Bruce PG. The Lithium-Oxygen Battery with Ether-Based Electrolytes. Angew Chem Int Ed 2011; 50(37): 8609-13. http://dx.doi.org/10.1002/anie.201102357 DOI: https://doi.org/10.1002/anie.201102357

Beattie SD, Manolescu DM, Blair SL. High-Capacity Lithium–Air Cathodes. J Electrochem Soc 2009; 156(1): A44. http://dx.doi.org/10.1149/1.3005989 DOI: https://doi.org/10.1149/1.3005989

Ayala P, Arenal R, Rümmeli M, Rubio A, Pichler T. The doping of carbon nanotubes with nitrogen and their potential applications. Carbon 2010; 48(3): 575-86. http://dx.doi.org/10.1016/j.carbon.2009.10.009 DOI: https://doi.org/10.1016/j.carbon.2009.10.009

Xingbang Hu YW, Li H, Zhang Z. Adsorption and Activation of O2 on Nitrogen-Doped Carbon Nanotubes. J Phys Chem C 2010; 114: 9603-7. http://dx.doi.org/10.1021/jp1000013 DOI: https://doi.org/10.1021/jp1000013

Shan B, Cho K. Oxygen dissociation on nitrogen-doped single wall nanotube: A first-principles study. Chem Phys Lett 2010; 492(1-3): 131-6. http://dx.doi.org/10.1016/j.cplett.2010.04.050 DOI: https://doi.org/10.1016/j.cplett.2010.04.050

Kichambare P, Kumar J, Rodrigues S, Kumar B. Electrochemical performance of highly mesoporous nitrogen doped carbon cathode in lithium–oxygen batteries. J Power Sources 2011; 196(6): 3310-6. http://dx.doi.org/10.1016/j.jpowsour.2010.11.112 DOI: https://doi.org/10.1016/j.jpowsour.2010.11.112

Yongliang Li XL, Geng D, Tang Y, Li R, Dodelet J-P, Lefe`vre M, Sun X. Carbon black cathodes for lithium oxygen batteries: Influence of porosity and heteroatom-doping. Carbon 2013; 64: 170-7. http://dx.doi.org/10.1016/j.carbon.2013.07.049 DOI: https://doi.org/10.1016/j.carbon.2013.07.049

Stevenson JDW-CaKJ. Effect of Nitrogen Concentration on Capacitance, Density of States, Electronic Conductivity. J Phys Chem C 2009; 113: 19082-90. http://dx.doi.org/10.1021/jp907160v DOI: https://doi.org/10.1021/jp907160v

Li Y, Wang J, Li X, Liu J, Geng D, Yang J, et al. Nitrogen-doped carbon nanotubes as cathode for lithium–air batteries. Electrochem Commun 2011; 13(7): 668-72. http://dx.doi.org/10.1016/j.elecom.2011.04.004 DOI: https://doi.org/10.1016/j.elecom.2011.04.004

Zhang GQ, Zheng JP, Liang R, Zhang C, Wang B, Hendrickson M, et al. Lithium–Air Batteries Using SWNT/CNF Buckypapers as Air Electrodes. J Electrochem Soc 2010; 157(8): A953. http://dx.doi.org/10.1149/1.3446852 DOI: https://doi.org/10.1149/1.3446852

Mitchell RR, Gallant BM, Thompson CV, Shao-Horn Y. All-carbon-nanofiber electrodes for high-energy rechargeable Li–O2 batteries. Energy Environ Sci 2011; 4(8): 2952. http://dx.doi.org/10.1039/c1ee01496j DOI: https://doi.org/10.1039/c1ee01496j

Yang X-H, He P, Xia Y-Y. Preparation of mesocellular carbon foam and its application for lithium/oxygen battery. Electrochem Commun 2009; 11(6): 1127-30. http://dx.doi.org/10.1016/j.elecom.2009.03.029 DOI: https://doi.org/10.1016/j.elecom.2009.03.029

Novoselov KS, Fal′ko VI, Colombo L, Gellert PR, Schwab MG, Kim K. A roadmap for graphene. Nature 2012; 490(7419): 192-200. http://dx.doi.org/10.1038/nature11458 DOI: https://doi.org/10.1038/nature11458

Zhu Y, Murali S, Stoller MD, Ganesh KJ, Cai W, Ferreira PJ, et al. Carbon-Based Supercapacitors Produced by Activation of Graphene. Science 2011; 332(6037): 1537-41. http://dx.doi.org/10.1126/science.1200770 DOI: https://doi.org/10.1126/science.1200770

Sun B, Wang B, Su D, Xiao L, Ahn H, Wang G. Graphene nanosheets as cathode catalysts for lithium-air batteries with an enhanced electrochemical performance. Carbon 2012; 50(2): 727-33. http://dx.doi.org/10.1016/j.carbon.2011.09.040 DOI: https://doi.org/10.1016/j.carbon.2011.09.040

Yoo E, Nakamura J, Zhou H. N-Doped graphene nanosheets for Li–air fuel cells under acidic conditions. Energy Environ Sci 2012; 5(5): 6928. http://dx.doi.org/10.1039/c2ee02830a DOI: https://doi.org/10.1039/c2ee02830a

Yongliang Li JW, Li X, Geng D, Banis MN, Li R, Sun X. Nitrogen-doped graphene nanosheets as cathode materials with excellent. Electrochem Commun 2012; 18(12-15). DOI: https://doi.org/10.1016/j.elecom.2012.01.023

Schniepp HC, Li J-L, McAllister MJ, Sai H. Functionalized Single Graphene Sheets Derived from Splitting Graphite Oxide. J Phys Chem B 2006; 110(17): 8535-9. http://dx.doi.org/10.1021/jp060936f DOI: https://doi.org/10.1021/jp060936f

Wang Z-L, Xu D, Xu J-J, Zhang L-L, Zhang X-B. Graphene Oxide Gel-Derived, Free-Standing, Hierarchically Porous Carbon for High-Capacity and High-Rate Rechargeable Li-O2 Batteries. Adv Funct Mater 2012; 22(17): 3699-705. http://dx.doi.org/10.1002/adfm.201200403 DOI: https://doi.org/10.1002/adfm.201200403

Wang Y, Cao D, Wang G, Wang S, Wen J, Yin J. Spherical clusters of β-Ni(OH)2 nanosheets supported on nickel foam for nickel metal hydride battery. Electrochim Acta 2011; 56(24): 8285-90. http://dx.doi.org/10.1016/j.electacta.2011.06.098 DOI: https://doi.org/10.1016/j.electacta.2011.06.098

Marcus A. Worsley PJP, Tammy Y. Olson, Juergen Biener, Joe H. Satcher, Jr., Baumann aTF. Synthesis of Graphene Aerogel with High Electrical Conductivity. J Am Chem Soc 2010; 132: 14067-9. http://dx.doi.org/10.1021/ja1072299 DOI: https://doi.org/10.1021/ja1072299

Thapa AK, Hidaka Y, Hagiwara H, Ida S, Ishihara T. Mesoporous β-MnO2 Air Electrode Modified with Pd for Rechargeability in Lithium-Air Battery. J Electrochem Soc 2011; 158(12): A1483. http://dx.doi.org/10.1149/2.090112jes DOI: https://doi.org/10.1149/2.090112jes

Benbow EM, Kelly SP, Zhao L, Reutenauer JW, Suib SL. Oxygen Reduction Properties of Bifunctional α-Manganese Oxide Electrocatalysts in Aqueous and Organic Electrolytes. J Phys Chem C 2011; 115(44): 22009-17. http://dx.doi.org/10.1021/jp2055443 DOI: https://doi.org/10.1021/jp2055443

Cao Y, Wei Z, He J, Zang J, Zhang Q, Zheng M, et al. α-MnO2 nanorods grown in situ on graphene as catalysts for Li–O2 batteries with excellent electrochemical performance. Energy Environ Sci 2012; 5(12): 9765. http://dx.doi.org/10.1039/c2ee23475k DOI: https://doi.org/10.1039/c2ee23475k

Cheng H, Scott K. Carbon-supported manganese oxide nanocatalysts for rechargeable lithium–air batteries. J Power Sources 2010; 195(5): 1370-4. http://dx.doi.org/10.1016/j.jpowsour.2009.09.030 DOI: https://doi.org/10.1016/j.jpowsour.2009.09.030

Li J, Wang N, Zhao Y, Ding Y, Guan L. MnO2 nanoflakes coated on multi-walled carbon nanotubes for rechargeable lithium-air batteries. Electrochem Commun 2011; 13(7): 698-700. http://dx.doi.org/10.1016/j.elecom.2011.04.013 DOI: https://doi.org/10.1016/j.elecom.2011.04.013

Débart A, Paterson AJ, Bao J, Bruce PG. α-MnO2 Nanowires: A Catalyst for the O2 Electrode in Rechargeable Lithium Batteries. Angew Chem 2008; 120(24): 4597-600. http://dx.doi.org/10.1002/ange.200705648 DOI: https://doi.org/10.1002/ange.200705648

Ida S, Thapa AK, Hidaka Y, Okamoto Y, Matsuka M, Hagiwara H, et al. Manganese oxide with a card-house-like structure reassembled from nanosheets for rechargeable Li-air battery. J Power Sources 2012; 203: 159-64. http://dx.doi.org/10.1016/j.jpowsour.2011.11.042 DOI: https://doi.org/10.1016/j.jpowsour.2011.11.042

Lee J-H, Black R, Popov G, Pomerantseva E, Nan F, Botton GA, et al. The role of vacancies and defects in Na0.44MnO2 nanowire catalysts for lithium–oxygen batteries. Energy Environ Sci 2012; 5(11): 9558. http://dx.doi.org/10.1039/c2ee21543h DOI: https://doi.org/10.1039/c2ee21543h

Cui Y, Wen Z, Liu Y. A free-standing-type design for cathodes of rechargeable Li–O2 batteries. Energy Environ Sci 2011; 4(11): 4727. http://dx.doi.org/10.1039/c1ee02365a DOI: https://doi.org/10.1039/c1ee02365a

Black R, Lee J-H, Adams B, Mims CA, Nazar LF. The Role of Catalysts and Peroxide Oxidation in Lithium-Oxygen Batteries. Angew Chem Int Ed 2013; 52(1): 392-6. http://dx.doi.org/10.1002/anie.201205354 DOI: https://doi.org/10.1002/anie.201205354

Liang YY, Li YG, Wang HL, Zhou JG, Wang J, Regier T, et al. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat Mater 2011; 10(10): 780-6. http://dx.doi.org/10.1038/nmat3087 DOI: https://doi.org/10.1038/nmat3087

Chan K-Y, Jie Ding JR, Tsang SCaKY. Supported mixed metal nanoparticles as electrocatalysts in low temperature fuel cells. J Mater Chem 2004; 14: 505-16. http://dx.doi.org/10.1039/b314224h DOI: https://doi.org/10.1039/b314224h

Lu Y-C, Xu Z, Gasteiger HA, Chen S. Platinum-Gold Nanoparticles: A Highly Active Bifunctional Electrocatalyst for Rechargeable Lithium-Air Batteries. J Am Chen Soc 2010; 132: 12170-1. http://dx.doi.org/10.1021/ja1036572 DOI: https://doi.org/10.1021/ja1036572

Lu Y-C, Gasteiger HA, Parent MC, Chiloyan V, Shao-Horn Y. The Influence of Catalysts on Discharge and Charge Voltages of Rechargeable Li–Oxygen Batteries. Electrochem. Solid-State Lett 2010; 13(6): A69. http://dx.doi.org/10.1149/1.3363047 DOI: https://doi.org/10.1149/1.3363047

Lu Y-C, Gasteiger HA, Shao-Horn Y. Catalytic Activity Trends of Oxygen Reduction Reaction for Nonaqueous Li-Air Batteries. J Am Chem Soc 2011; 133(47): 19048-51. http://dx.doi.org/10.1021/ja208608s DOI: https://doi.org/10.1021/ja208608s

Lu Y-C, Kwabi DG, Yao KPC, Harding JR, Zhou J, Zuin L, et al. The discharge rate capability of rechargeable Li–O2 batteries. Energy Environ Sci 2011; 4(8): 2999. http://dx.doi.org/10.1039/c1ee01500a DOI: https://doi.org/10.1039/c1ee01500a

Chen J, Hummelshøj JS, Thygesen KS, Myrdal JSG, Nørskov JK, Vegge T. The role of transition metal interfaces on the electronic transport in lithium–air batteries. Catal Today 2011; 165(1): 2-9. http://dx.doi.org/10.1016/j.cattod.2010.12.022 DOI: https://doi.org/10.1016/j.cattod.2010.12.022

Yang Y, Shi M, Zhou Q-F, Li Y-S, Fu Z-W. Platinum nanoparticle–graphene hybrids synthesized by liquid phase pulsed laser ablation as cathode catalysts for Li-air batteries. Electrochem Commun 2012; 20: 11-4. http://dx.doi.org/10.1016/j.elecom.2012.03.040 DOI: https://doi.org/10.1016/j.elecom.2012.03.040

McCloskey BD, Scheffler R, Speidel A, Bethune DS, Shelby RM, Luntz AC. On the Efficacy of Electrocatalysis in Nonaqueous Li–O2Batteries. J Am Chem Soc 2011; 133(45): 18038-41. http://dx.doi.org/10.1021/ja207229n DOI: https://doi.org/10.1021/ja207229n

Cheng H, Scott K. Selection of oxygen reduction catalysts for rechargeable lithium–air batteries—Metal or oxide? Appl Catal B Environ 2011; 108-109: 140-51. http://dx.doi.org/10.1016/j.apcatb.2011.08.021 DOI: https://doi.org/10.1016/j.apcatb.2011.08.021

Lu Y, Wen Z, Jin J, Cui Y, Wu M, Sun S. Mesoporous carbon nitride loaded with Pt nanoparticles as a bifunctional air electrode for rechargeable lithium-air battery. J Solid State Electrochem 2012; 16(5): 1863-8. http://dx.doi.org/10.1007/s10008-012-1640-8 DOI: https://doi.org/10.1007/s10008-012-1640-8

Trahey L, Johnson CS, Vaughey JT, Kang SH, Hardwick LJ, Freunberger SA, et al. Activated Lithium-Metal-Oxides as Catalytic Electrodes for Li–O2 Cells. Electrochem Solid-State Lett 2011; 14(5): A64. http://dx.doi.org/10.1149/1.3555366 DOI: https://doi.org/10.1149/1.3555366

Wang L, Zhao X, Lu Y, Xu M, Zhang D, Ruoff RS, et al. CoMn2O4 Spinel Nanoparticles Grown on Graphene as

Bifunctional Catalyst for Lithium-Air Batteries. J Electrochem Soc 2011; 158(12): A1379. http://dx.doi.org/10.1149/2.068112jes DOI: https://doi.org/10.1149/2.068112jes

Wang H, Yang Y, Liang Y, Zheng G, Li Y, Cui Y, et al. Rechargeable Li–O2 batteries with a covalently coupled MnCo2O4–graphene hybrid as an oxygen cathode catalyst. Energy Environ Sci 2012; 5(7): 7931. http://dx.doi.org/10.1039/c2ee21746e DOI: https://doi.org/10.1039/c2ee21746e

Zhang GQ, Hendrickson M, Plichta EJ, Au M, Zheng JP. Preparation, Characterization and Electrochemical Catalytic Properties of Hollandite Ag2Mn8O16 for Li-Air Batteries. J Electrochem Soc 2012; 159(3): A310-A4. http://dx.doi.org/10.1149/2.085203jes DOI: https://doi.org/10.1149/2.085203jes

Zhang SS, Ren X, Read J. Heat-treated metal phthalocyanine complex as an oxygen reduction catalyst for non-aqueous electrolyte Li/air batteries. Electrochim Acta 2011; 56(12): 4544-8. http://dx.doi.org/10.1016/j.electacta.2011.02.072 DOI: https://doi.org/10.1016/j.electacta.2011.02.072

Zhang SS, Read J. Partially fluorinated solvent as a co-solvent for the non-aqueous electrolyte of Li/air battery. J Power Sources 2011; 196(5): 2867-70. http://dx.doi.org/10.1016/j.jpowsour.2010.11.021 DOI: https://doi.org/10.1016/j.jpowsour.2010.11.021

Zhang SS, Xu K, Read J. A non-aqueous electrolyte for the operation of Li/air battery in ambient environment. J Power Sources 2011; 196(8): 3906-10. http://dx.doi.org/10.1016/j.jpowsour.2010.12.092 DOI: https://doi.org/10.1016/j.jpowsour.2010.12.092

Ren X, Zhang SS, Tran DT, Read J. Oxygen reduction reaction catalyst on lithium/air battery discharge performance. J Mater Chem 2011; 21(27): 10118. http://dx.doi.org/10.1039/c0jm04170j DOI: https://doi.org/10.1039/c0jm04170j

Dong S, Chen X, Zhang K, Gu L, Zhang L, Zhou X, et al. Molybdenum nitride based hybrid cathode for rechargeable lithium–O2 batteries. Chem Commun 2011; 47(40): 11291. http://dx.doi.org/10.1039/c1cc14427h DOI: https://doi.org/10.1039/c1cc14427h

Zhang K, Zhang L, Chen X, He X, Wang X, Dong S, et al. Mesoporous Cobalt Molybdenum Nitride: A Highly Active Bifunctional Electrocatalyst and Its Application in Lithium–O2Batteries. J Phys Chem C 2013; 117(2): 858-65. http://dx.doi.org/10.1021/jp310571y DOI: https://doi.org/10.1021/jp310571y

Cheng F, Chen J. Lithium-air batteries: Something from nothing. Nat Chem 2012; 4(12): 962-3. http://dx.doi.org/10.1038/nchem.1516 DOI: https://doi.org/10.1038/nchem.1516

Si Hyoung Oh RB, Pomerantseva E, Lee J-H, Nazar LF. Synthesis of a metallic mesoporous pyrochlore as a catalyst for lithium–O2 batteries. Nat Chem 2012; 4: 1004-10. http://dx.doi.org/10.1038/nchem.1499 DOI: https://doi.org/10.1038/nchem.1499

Downloads

Published

2013-11-28

How to Cite

Zha, Z., Shen, C., Wang, D., & Han, W. (2013). Review on Air Cathode in Li-Air Batteries. Journal of Technology Innovations in Renewable Energy, 2(4), 293–305. https://doi.org/10.6000/1929-6002.2013.02.04.1

Issue

Section

Articles