Role of PVA Flakes in Promoting Self-Degradation of Sodium Metasilicate-Activated Cement under a Hydrothermal Environment at 150°C

Authors

  • T. Sugama Brookhaven National Laboratory, Sustainable Energy Technologies, Building 526, 12 N. Sixth St., Upton, NY 11973, USA
  • T. Pyatina Brookhaven National Laboratory, Sustainable Energy Technologies, Building 526, 12 N. Sixth St., Upton, NY 11973, USA
  • A. Muraca Department of Chemistry, SUNY Stony Brook, Stony Brook, NY 11794, USA

DOI:

https://doi.org/10.6000/1929-6002.2013.02.04.6

Keywords:

Enhanced Geothermal System, polyvinyl alcohol, cement, sodium metasilicate, lost circulation, temporary sealer

Abstract

We investigated the effect of flakes of polyvinyl alcohol (PVA) on the self-degradation of sodium metasilicate (SMS)-activated slag/Class C fly ash cement, which is used as temporary sealer for fractures in Enhanced Geothermal System (EGS) wells under a hydrothermal environment at ³150°C and at pressure of 1000 psi. The reactions between PVA and SMS dissolved in an aqueous medium at 85°C led to the formation of a colloidal hydroxylated silicate-cross-linked PVA gel in the cement body. This gel-incorporated cement had a compressive strength >2000 psi, so ensuring that it adequately plugs the fractures. Increasing the hydrothermal temperature to ³150°C triggered the transformation of the gel into a sol. This in-situ gel®sol phase transition played a pivotal role in promoting the cement’s self-degradation because of the extensive spreading of sol in the cement body, and its leaching from the cement. In contrast, when gel was dry heated at ³150°C, the gel®xerogel phase transformation engendered the molecular fragmentation of PVA. This fragmentation yielded polysilicate cross-linked PVA derived from the combination of extended-chain scission, carboxylation and condensation, so that it no longer served as a self-degrading promoter of cement.

References

Sugama T, Pyatina T. Effect of sodium carboxymethyl celluloses on water-catalyzed self-degradation of 200°C-heated alkali-activated cement. May 2012, BNL-101090-2012-IR. DOI: https://doi.org/10.2172/1091189

Sugama T, Pyatina T, Gill S, Kisslinger K, Iverson B, Bour D. Self-decomposable fibrous bridging additives for temporary cementitious fracture sealers in EGS wells. November 2012, BNL-101089-2012-IR. DOI: https://doi.org/10.2172/1091188

Xu B, Toutanji HA, Gilbert J. Impact resistance of poly(vinyl alcohol) fiber reinforced high-performance organic aggregate cementitious material. Cem Concr Res 2010; 40(2): 347-51. http://dx.doi.org/10.1016/j.cemconres.2009.09.006 DOI: https://doi.org/10.1016/j.cemconres.2009.09.006

Wang S, Li VC. Polyvinyl alcohol fiber reinforced engineered cementitious composites: material design and performances. In: Proc, International workshop on HPFRCC structural applications. Hawaii: Citeseer 2005.

Li VC, Wang S, Wu C. Tensile strain-hardening behavior of polyvinyl alcohol engineered cementitious composite (PVA-ECC) ACI Mater. J-Am Concr Inst 2001; 98(6): 483-92. DOI: https://doi.org/10.14359/10851

[6] Shibayama M, Sato M, Kimura Y, Fujiwara H, Nomura S. 11B N.M.R. study on the reaction of poly(vinyl alcohol) with boric acid. Polymer 1988; 29: 336-40. http://dx.doi.org/10.1016/0032-3861(88)90343-6 DOI: https://doi.org/10.1016/0032-3861(88)90343-6

[7] Tian X, Liao Q, Liu W, Wang YZ, Zhu X, Li J, Wang H. Photo-hydrogen production rate of a PVA-boric acid gel granule containing immobilized photosynthetic bacteria cells. Inter J Hydrogen Energy 2009; 34: 4708-17. http://dx.doi.org/10.1016/j.ijhydene.2009.03.042 DOI: https://doi.org/10.1016/j.ijhydene.2009.03.042

[8] Ohishi K, Itadani T, Hayashi T, Nakai T, Horii F. Role of boric acid in the formation of poly(vinyl alcohol)-iodine complexes in undrawn films. Polymer 2010; 51: 687-93. http://dx.doi.org/10.1016/j.polymer.2009.01.044 DOI: https://doi.org/10.1016/j.polymer.2009.01.044

[9] Georgescu M, Puri A, Coarna M, Voicu G, Voinitchi D. Thermoanalytical and infrared spectroscopy investigations of some mineral pastes containing organic polymers. Cem Concr Res 2002; 32: 1269-75. http://dx.doi.org/10.1016/S0008-8846(02)00762-7 DOI: https://doi.org/10.1016/S0008-8846(02)00762-7

[10] Yang WP, Shyu SS, Lee E-S, Chao A-C. Effect of PVA content and calcination temperature on the properties of PVA/boehmite composite film. Mater Chem Phys 1996; 45: 108-13. http://dx.doi.org/10.1016/0254-0584(96)80086-1 DOI: https://doi.org/10.1016/0254-0584(96)80086-1

[11] Kim DS, Park HB, Rhim JW, Lee YM. Preparation and characterization of crosslinked PVA/SiO2 hybrid membranes containing sulfonic acid groups for direct methanol fuel cell applications. J Membrane Sci 2004; 240: 37-48. http://dx.doi.org/10.1016/j.memsci.2004.04.010 DOI: https://doi.org/10.1016/j.memsci.2004.04.010

[12] Miyazaki T, Takeda Y, Akane S, Itou T, Hoshiko A, En K. Role of boric acid for a poly(vinyl alcohol) film as a cross-linking agent: Melting behaviors of the films with boric acid. Polymer 2010; 51: 5539-49. http://dx.doi.org/10.1016/j.polymer.2010.09.048 DOI: https://doi.org/10.1016/j.polymer.2010.09.048

Prudon AO. The action of alkalies on blast furnace slags. J Chem Ind 1940; 59: 191-202.

Glukhovsky VD, Rostovskaja SG, Rumyna GV. High strength slag-alkaline cements. Proceedings of 8th Int Cong Chem Cem Paris 1980; Vol 3: 164-68.

Malolepszy J. The hydration and the properties ofalkali activated slag cementitious materials, Zeszyly Naukowe AGH. Ceramika 1989; 53: 7-125.

[16] Palomo A, Grutzeck MW, Blanco MT. Alkali-activated fly ashes. A cement for the future. Cem Concr Res 1999; 29: 1323-29. http://dx.doi.org/10.1016/S0008-8846(98)00243-9 DOI: https://doi.org/10.1016/S0008-8846(98)00243-9

[17] Bao Y, Ma J, Na L. Synthesis and swelling behaviors of sodium carboxymethyl cellulose-g-poly(AA-co-AM-co-AMPS)/MMT superabsorbent hydrogel. Carbohydrate Poly 2011; 84: 76-82. http://dx.doi.org/10.1016/j.carbpol.2010.10.061 DOI: https://doi.org/10.1016/j.carbpol.2010.10.061

[18] Mishar S, Rani GU, Sen G. Microwave initiated synthesis and application of polyacrylic acid grafted carboxymethyl cellulose. Carbohydrate Poly 2012; 87: 2255-62. http://dx.doi.org/10.1016/j.carbpol.2011.10.057 DOI: https://doi.org/10.1016/j.carbpol.2011.10.057

[19] Akhter S, Allan K, Buchanan D, Cook JA, Campion A, White JM. XPS and IR study of x-ray induced degradation of PVA polymer film. Appl Surf Sci 1988-89; 35: 241-58. http://dx.doi.org/10.1016/0169-4332(88)90053-0 DOI: https://doi.org/10.1016/0169-4332(88)90053-0

[20] Uchino T, Sakka T, Iwasaki M. Interpretation of hydrated states of sodium silicate glasses by infrared and raman analysis. J Am Ceram Soc 1991; 74: 306-13. http://dx.doi.org/10.1111/j.1151-2916.1991.tb06880.x DOI: https://doi.org/10.1111/j.1151-2916.1991.tb06880.x

[21] Abdelrazek EM, Elashmawi IS, Labeeb S. Chitosan filler effects on the experimental characterization, spectroscopic investigation and thermal studies of PVA/PVP blend films. Pysica B 2010; 405: 2021-27. http://dx.doi.org/10.1016/j.physb.2010.01.095 DOI: https://doi.org/10.1016/j.physb.2010.01.095

Gilmanl JW, VanderHart DL, Kashiwagi T. Thermal Decomposition Chemistry of Poly(vinyl alcohol). Char Characterization and Reactions with Bismaleimides. Fire and Polymers II: Materials and Test for Hazard Prevention, Am. Chem. Soc., ACS Symp. Series 599, Washington, DC 1994. DOI: https://doi.org/10.1021/bk-1995-0599.ch011

[23] Badr Y, Mahmoud MA. Effect of PVA surrounding medium on ZnSe monoparticles: Size, optical, and electrical properties. Spectrochimica Acta Part A 2006; 65: 584-90. http://dx.doi.org/10.1016/j.saa.2005.12.015 DOI: https://doi.org/10.1016/j.saa.2005.12.015

Downloads

Published

2013-11-28

How to Cite

Sugama, T., Pyatina, T., & Muraca, A. (2013). Role of PVA Flakes in Promoting Self-Degradation of Sodium Metasilicate-Activated Cement under a Hydrothermal Environment at 150°C. Journal of Technology Innovations in Renewable Energy, 2(4), 352–365. https://doi.org/10.6000/1929-6002.2013.02.04.6

Issue

Section

Articles