Numerical Simulations for Average Temperature Differential Stirling Engine

Authors

  • Khaled M. Bataineh Department of Mechanical Engineering, Jordan University of Science and Technology, Irbid-Jordan

DOI:

https://doi.org/10.6000/1929-6002.2013.02.03.9

Keywords:

Stirling engines, dynamic model, thermal losses, performance, numerical simulations

Abstract

A second order mathematical model taken into account thermal losses for average temperature differential Stirling engine is developed. Dynamic simulation of the engine based on mathematical formulation is carried out under different operating and geometrical conditions to investigate the engine performance. The developed model is used to investigate the influence of geometrical and physical parameters on the performance of Stirling engine. Design optimization of a mean temperature differential Stirling engine is carried out. Finally optimal parameters have been determined.

References


[1] Stirling Robert. Patent no. 4081, Stirling air engine and the heat regenerator 1816.
[2] Bataineh K, Fayez N. Analysis of thermal performance of building attached sunspace. Energy Buildings 2011; 43(8): 1863-68.
[3] Bataineh KM, Dalalah D. Optimal Configuration for Design of Stand-Alone PV System. Smart Grid Renewable Energy 2012; 3(2)
[4] Bataineh K, Fayez N. Thermal Performance of Building Attached Sunspace in Jordan Climate. The 1st International Nuclear and Renewable Energy Conference “(INREC’10) Amman, Jordan 2010.
[5] Popescu G, Radcenco V, Costea M, Feidt M. Thermodynamic optimization in the finished time of Stirling engine
[Optimisation thermodynamique en temps fini du moteur de Stirling endo-et exoirre ?versible]. Rev Ge ?n Therm 1996; 35: 656-61. http://dx.doi.org/10.1016/S0035-3159(96)80062-6
[6] Kaushik SC, Kumar S. Finite time thermodynamic analysis of endoreversible Stirling heat engine with regenerative losses. Energy 2000; 25: 989-1003. http://dx.doi.org/10.1016/S0360-5442(00)00023-2
[7] Wang Jin T, Chen J. Influence of several irreversible losses on the performance of a ferroelectric Stirling refrigeration-cycle. Appl Energy 2002; 72: 495-11. http://dx.doi.org/10.1016/S0306-2619(02)00026-0
[8] Kongtragool B, Wongwises S. Thermodynamic analysis of a Stirling engine including dead volumes of hot space, cold space and regenerator. Renew Energy 2006; 31: 345-59. http://dx.doi.org/10.1016/j.renene.2005.03.012
[9] Tlili I, Timoumi Y, Nasrallah SB. Analysis and design consideration of mean temperature differentialStirling engine for solar application. Renewable Energy 2008; 33: 1911-21. http://dx.doi.org/10.1016/j.renene.2007.09.024
[10] Andersen SK, Carlsen H, Thomsen PG. Numerical study on optimal Stirling engine regenerator matrix designs taking into account the effects of matrix temperature oscillations. Energy Convers Manage 2006; 47: 894-908. http://dx.doi.org/10.1016/j.enconman.2005.06.006
[11] Andersen SK, Carlsen H, Thomsen PG. Preliminary Results from Simulations of Temperature Oscillations in Stirling Engine Regenerator Matrices. Energy 2006; 31(10-11): 1371-83.
[12] Andersen Sk, Carlsen H, Thomsen PG. Simulation of Temperature Fluctuations in Stirling Engine Regenerator Matrices, Proceedings of 11th international Stirling engine Conference 2003.
[13] Urieli I, Berchowitz D. Stirling cycle engine analysis. Bristol: Adam Hilger 1984.
[14] Wu F, Chen L, Wu C, Sun F. Optimum performance of irreversible Stirling engine with imperfect regeneration. Energy Convers Manage 1998; 39: 727-32. http://dx.doi.org/10.1016/S0196-8904(97)10036-X
[15] Costa M, Petrescu S, Harman C. The effect of irreversibilities on solar Stirling engine cycle performance. Energy Convers Manage 1999; 40: 1723-31. http://dx.doi.org/10.1016/S0196-8904(99)00065-5
[16] Cheng C-H, Yang H-S. Analytical model for predicting the effect of operating speed on shaft power output of Stirling engines.Energy 2011; 36: 5899-908. http://dx.doi.org/10.1016/j.energy.2011.08.033
[17] Tlili I, Timoumi Y, Ben Nasrallah S. Numerical simulation and losses analysis in a Stirling engine. Heat Technol 2006; 24: 97-105.
[18] Schmidt G. The Theory of Lehmann’s Calorimetric Machine Z. Ver. Dtsch Ing 1871; 15: part 1.
[19] Organ AJ. The regenerator and the Stirling engine by. London: Mechanical Engineering Publications Limited 1997.
[20] Finkelstein T. Insights into the thermodynamics of Stirling cycle machines. AIAA-94-3951-CP 1994; 1829-34.
[21] Kolin I. Stirling motor: history-theory-practice. Dubrovnik: Inter University Center 1991.
[22] Organ AJ. Solution of the conjugate heat transfer problem. Proc Inst Mech Eng (Pt. C) 1997; 211: 17-24.
[23] Kays WM, London AL. Compact heat exchangers. McGraw-Hill 1964.

Downloads

Published

2013-08-30

How to Cite

Bataineh, K. M. (2013). Numerical Simulations for Average Temperature Differential Stirling Engine . Journal of Technology Innovations in Renewable Energy, 2(3), 278–292. https://doi.org/10.6000/1929-6002.2013.02.03.9

Issue

Section

Articles