Bioaugmented Hydrogen Production from Lignocellulosic Substrates Using Co-Cultures of Shigella flexneri str. G3 and Clostridium acetobutylicum X9

Authors

  • Lingfang Gao State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), PR China
  • Cristiano Varrone ENEA-Italian Agency for New Technologies, Energy and Sustainable Development (UTRINN-BIO), Rome, Italy
  • Tao Sheng State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), PR China
  • Chong Liu State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), PR China
  • Chuang Chen State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), PR China
  • Wenzong Liu Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
  • Aijie Wang State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), PR China

DOI:

https://doi.org/10.6000/1929-6002.2014.03.02.1

Keywords:

Bioaugmentation, co-culture, lignocelluloses, saccharification, biohydrogen.

Abstract

Bioaugmented fermentation of cellulosic substrates to produce biohydrogen via co-culture of isolated strains was investigated. Two mesophilic anaerobic bacterial strains, known for their ability to hydrolyze cellulosic substrates, were taken in consideration: Shigella flexneri str. G3, which shows high cellulolytic activity but cannot ferment oligosaccharides to bioenergy, and Clostridium acetobutylicum X9, able to convert microcrystalline cellulose into hydrogen. The ability of the selected strains to effectively convert different cellulosic substrates to hydrogen was tested on carboxymethyl cellulose (AVICEL), as well as pretreated lignocellulosic material such as Bermuda grass, corn stover, rice straw, and corn cob. Results showed that co-culture of Shigella flexneri str G3 and Clostridium acetobutylicum X9 efficiently improved cellulose hydrolysis and subsequent hydrogen production from carboxymethyl cellulose. Hydrogen production yield was enhanced from 0.65 mol H2 (mol glucose)−1 of the X9 single culture to approximately 1.5 mol H2 (mol glucose)−1 of the co-culture, while the cellulose degradation efficiency increased from 50% to 95%. Co-culture also efficiently improved hydrogen production from natural lignocellulosic materials (which was up to 4-5 times higher than mono-culture with X9), with the highest performance of 24.8 mmol L-1 obtained on Bermuda grass. The results demonstrate that co-culture of S. flexneri G3 and C. acetobutylicum X9 was capable of efficiently enhance cellulose conversion to hydrogen, thus fostering potential biofuel applications under mesophilic conditions.

References

Levin DB, Zhu H, Beland M, Cicek N, Holbein BE. Potential for hydrogen and methane production from biomass residues in Canada. Bioresour Technol 2007; 98: 654-60. http://dx.doi.org/10.1016/j.biortech.2006.02.027 DOI: https://doi.org/10.1016/j.biortech.2006.02.027

Howard RL, Abotsi E, Jansen EL, Howard S. Lignocellulose biotechnology: issues of bioconversion and enzyme production. Afr J Biotechnol 2003; 2: 602-19. DOI: https://doi.org/10.5897/AJB2003.000-1115

Dharmadi Y, Murarka A, Gonzalez R. Anaerobic fermentation of glycerol by Escherichia coli: a new platform for metabolic engineering. Biotechnol Bioeng 2006; 94: 821-9. http://dx.doi.org/10.1002/bit.21025 DOI: https://doi.org/10.1002/bit.21025

Parveen K, Barrett D, Delwiche M, Stroeve P. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel prodution. Ind Eng Chem Res 2009; 48: 3713-29. http://dx.doi.org/10.1021/ie801542g DOI: https://doi.org/10.1021/ie801542g

Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD. Biomass recalcitrance: Engineering plants and enzymes for biofuels production. Science 2007; 315: 804-7. http://dx.doi.org/10.1126/science.1137016 DOI: https://doi.org/10.1126/science.1137016

Lynd LR, Laser S, Bransby D, et al. How biotech transform biofuels. Nat Biotechnol 2008; 26: 169-72. http://dx.doi.org/10.1038/nbt0208-169 DOI: https://doi.org/10.1038/nbt0208-169

Ingram LO, Gomez PF, Lai X, Moniruzzaman M, Wood BE, Yomano LP, York SW. Metabolic engineering of bacteria for ethanol production. Biotechnol Bioeng 1998; 58: 204-14. http://dx.doi.org/10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C DOI: https://doi.org/10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C

Khan A, Murray W. Single step conversion of cellulose to ethanol by a mesophilic co-culture. Biotech Lett 1982; 4: 177-80. http://dx.doi.org/10.1007/BF00144320 DOI: https://doi.org/10.1007/BF00144320

Lynd LR, Weimer P, van Zyl WH, Pretorius IS. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 2002; 66: 506-17. http://dx.doi.org/10.1128/MMBR.66.3.506-577.2002 DOI: https://doi.org/10.1128/MMBR.66.3.506-577.2002

Wright J, Wyman C, Grohmann K. Simultaneous saccharification and fermentation of lignocelluloses-process evaluation. Appl Biochem Biotechnol 1988; 18: 75-90. http://dx.doi.org/10.1007/BF02930818 DOI: https://doi.org/10.1007/BF02930818

Liu H, Zhang T, Fang H. Thermophilic H2 production from a cellulose-containing wastewater. Biotech Lett 2003; 25: 365-9. http://dx.doi.org/10.1023/A:1022341113774 DOI: https://doi.org/10.1023/A:1022341113774

Liu Y, Yu P, Song X, Qu Y. Hydrogen production from cellulose by co-culture of Clostridium thermocellum JN4 and Thermoanaerobacterium thermosaccharolyticum GD17. Int J Hydrogen Energy 2008; 33: 2927-33. http://dx.doi.org/10.1016/j.ijhydene.2008.04.004 DOI: https://doi.org/10.1016/j.ijhydene.2008.04.004

Wang A, Gao L, Ren N, Xu J, Zhou J. Isolation and characterization of Shigella flexneri G3, capable of effective cellulosic saccharification under mesophilic conditions. Appl Environ Microbiol 2011; 77: 517-23. http://dx.doi.org/10.1128/AEM.01230-10 DOI: https://doi.org/10.1128/AEM.01230-10

Ren Z, Ward TE, Logan BE, Regan JM. Characterization of the cellulolytic and hydrogen-producing activities of six mesophilic Clostridium species. J Appl Microbiol 2007; 103: 2258-66. http://dx.doi.org/10.1111/j.1365-2672.2007.03477.x DOI: https://doi.org/10.1111/j.1365-2672.2007.03477.x

Lo YC, Saratale D, Chang J. Isolation of cellulose-hydrolytic bacteria and applications of the cellulolytic enzymes for cellulosic biohydrogen production. Enzyme Microbial Technol 2009; 44: 417-25. http://dx.doi.org/10.1016/j.enzmictec.2009.03.002 DOI: https://doi.org/10.1016/j.enzmictec.2009.03.002

Lo YC, Bai M, Chang J. Cellulosic hydrogen production with a sequencing bacterial hydrolysis and dark fermentation strategy. Bioresou Technol 2008; 99: 8299-303. http://dx.doi.org/10.1016/j.biortech.2008.03.004 DOI: https://doi.org/10.1016/j.biortech.2008.03.004

Ren N, Wang A, Gao L, Xin L, Lee D. Bioaugmented hydrogen production from carboxymethyl cellulose and partially delignified corn stalks using isolatied cultures. Int J Hydrogen Energy 2008; 33: 5250-55. http://dx.doi.org/10.1016/j.ijhydene.2008.05.020 DOI: https://doi.org/10.1016/j.ijhydene.2008.05.020

Wang A, Ren N, Shi Y, Lee D. Bioaugmented hydrogen production from microcrystalline cellulose using co-cultured Clostridium acetobutylicum X9 and Ethanoigenens harbineses B49. Int J Hydrogen Energy 2008; 33: 912-7. http://dx.doi.org/10.1016/j.ijhydene.2007.10.017 DOI: https://doi.org/10.1016/j.ijhydene.2007.10.017

Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976; 72: 248-54. http://dx.doi.org/10.1016/0003-2697(76)90527-3 DOI: https://doi.org/10.1006/abio.1976.9999

Huang L, Gibbins L, Forsberg C. Transmembrane pH gradient and membrane potential in Clostridium acetobutylicum during growth under acetogenic and solventogenic conditions. Appl Environ Microbiol 1985; 50: 1043-7. DOI: https://doi.org/10.1128/aem.50.4.1043-1047.1985

Updegraff DM. Semimicro determination of cellulose in biological materials. Anal Biochem 1969; 32: 420-4. http://dx.doi.org/10.1016/S0003-2697(69)80009-6 DOI: https://doi.org/10.1016/S0003-2697(69)80009-6

Dubois M, Gilles K, Hamilton J, Rebers P, Smith F. A colorimetric method for the determination of sugars. Nature 1951; 168: 167. http://dx.doi.org/10.1038/168167a0 DOI: https://doi.org/10.1038/168167a0

Varrone C, Giussani B, Izzo G, Massini G, Marone A, Signorini A, Wang A. Statistical optimization of biohydrogen and ethanol production from crude glycerol by microbial mixed culture. Int J Hydrogen Energy 2012; 37: 16479-88. http://dx.doi.org/10.1016/j.ijhydene.2012.02.106 DOI: https://doi.org/10.1016/j.ijhydene.2012.02.106

Schell DJ, Sáez JC, Hamilton J, Tholudur A, McMillan JD. Use of measurement uncertainty analysis to assess accuracy of carbon mass balance closure for a cellulose production process. Appl Biochem Biotechnol 2002; 98-100: 509-23. http://dx.doi.org/10.1385/ABAB:98-100:1-9:509 DOI: https://doi.org/10.1007/978-1-4612-0119-9_42

Guedon E, Desvaus M, Payot S, Petitdemange H. Growth inhibition of Clostridium cellulolyticum by an inefficiently regulated carbon flow. Microbiology 1999; 145: 1831-8. http://dx.doi.org/10.1099/13500872-145-8-1831 DOI: https://doi.org/10.1099/13500872-145-8-1831

Guedon E, Payot S, Desvaux M, Petitdemange H. Relationships between cellobiose catabolism, enzyme levels, and metabolic intermediates in Clostridium cellulolyticum grown in a synthetic medium. Biotechnol Bioeng 2000; 67: 327-35. http://dx.doi.org/10.1002/(SICI)1097-0290(20000205)67:3<327::AID-BIT9>3.0.CO;2-U DOI: https://doi.org/10.1002/(SICI)1097-0290(20000205)67:3<327::AID-BIT9>3.0.CO;2-U

Desvaux M, Guedon E, Petitdemange H. Kinetics and metabolism of cellulose degradation at high substrates concentrations in steady-state continuous cultures of Clostridium cellulolyticum on a chemically defined medium. Appl Environ Microbiol 2001; 67: 3837-45. http://dx.doi.org/10.1128/AEM.67.9.3837-3845.2001 DOI: https://doi.org/10.1128/AEM.67.9.3837-3845.2001

Levin B, Islam R, Cicek N, Sparling R. Hydrogen production by Clostridium thermocellum 27405 from cellulosic biomass substrates. Int J Hydrogen Energy 2006; 31: 1496-503. http://dx.doi.org/10.1016/j.ijhydene.2006.06.015 DOI: https://doi.org/10.1016/j.ijhydene.2006.06.015

Sparling R, Islam R, Nazim C, Carere C, Chow H, Levin B. Formate synthesis by Clostridium thermocellum during anaerobic fermentation. Can J Microbiol 2006; 52: 681-8. http://dx.doi.org/10.1139/w06-021 DOI: https://doi.org/10.1139/w06-021

Chen F, Dixon R. Lignin modification improves fermentable sugar yields for biofuel production. Nat Biotechnol 2007; 25: 759-61. http://dx.doi.org/10.1038/nbt1316 DOI: https://doi.org/10.1038/nbt1316

Marone A, Massini G, Patriarca C, Signorini A, Varrone C, Izzo G. Hydrogen production from vegetable waste by bioaugmentation of indigenous fermentative communities. Int J Hydrogen Energy 2012; 37: 5612-22. http://dx.doi.org/10.1016/j.ijhydene.2011.12.159 DOI: https://doi.org/10.1016/j.ijhydene.2011.12.159

Rabaey K, Rodriguez J, Blackall LL, Keller J, Gross P, Batstone D, Verstraete W, Nealson KH. Microbial ecology meets electrochemistry: electricity-driven and driving communities. ISME J 2007; 1: 9-18. http://dx.doi.org/10.1038/ismej.2007.4 DOI: https://doi.org/10.1038/ismej.2007.4

Sarma SJ, Brar SK, Sydney EB, Le Bihan Y, Buelna G, Soccol CR. Microbial hydrogen production by bioconversion of crude glycerol: a review. Int J Hydrogen Energy 2012; 37: 6473-90. http://dx.doi.org/10.1016/j.ijhydene.2012.01.050 DOI: https://doi.org/10.1016/j.ijhydene.2012.01.050

Varrone C, Rosa S, Fiocchetti F, Giussani B, Izzo G, Marone A, Massini G, Signorini A. Enrichment of activity sludge for enhanced hydrogen production from crude glycerol. Int J Hydrogen Energy 2013; 38: 1319-31. http://dx.doi.org/10.1016/j.ijhydene.2012.11.069 DOI: https://doi.org/10.1016/j.ijhydene.2012.11.069

Published

2014-05-28

How to Cite

Gao, L., Varrone, C., Sheng, T., Liu, C., Chen, C., Liu, W., & Wang, A. (2014). Bioaugmented Hydrogen Production from Lignocellulosic Substrates Using Co-Cultures of Shigella flexneri str. G3 and Clostridium acetobutylicum X9. Journal of Technology Innovations in Renewable Energy, 3(2), 36–43. https://doi.org/10.6000/1929-6002.2014.03.02.1

Issue

Section

Articles