Potential Performance Enhancement of a Solar Combisystem with an Intelligent Controller
DOI:
https://doi.org/10.6000/1929-6002.2014.03.03.4Keywords:
Solar thermal, predictive, weather forecast, renewable, auxiliary energy.Abstract
Solar thermal systems in residential buildings are generally controlled by two-level controllers, which activate solar thermal or at times with low solar radiation auxiliary energy supply into a thermal storage. Simple controllers do not have any information on actual or expected solar radiation. This leads to interference of auxiliary- and solar heat supply, which reduces the share of solar thermal energy fed into the thermal storage. Increasing accuracy of weather forecast data suggests incorporation of this information in the control algorithm. This work analyzes the maximum potential performance enhancement when applying such an intelligent predictive control. Two solar thermal systems with one auxiliary source respectively are designed in TRNSYS – these systems represent the base case. Further, a number of simulations are conducted with minor variations for the plant parameters – this gives generic results for different system configurations. In addition, each system configuration is altered to mimic the behavior of a plant with intelligent predictive control. Comparison of results indicates an improvement potential up to 10% for annual solar fractions and up to 30% for monthly solar fractions. The performance bound with respect to the annual auxiliary energy savings is approximately 8%.
References
Streicher W. Teilsolare Raumheizung – Auslegung und hydraulische Integration. Graz University of Technology 1996.
Streicher W, Heimrath R. Analysis of system reports of Task 26 for sensitivity of parameters. Graz University of Technology 2003.
Heimrath R, Haller M. IEA SHC-Task 32, Subtask A, The reference heating system, the template solar system. Graz University of Technology 2007.
Raffenel Y, Fabrizio E, Virgone J, Blanco E, Filippi M. Integrated solar heating systems: From initial sizing procedure to dynamic simulation. Sol Energy 2009; 83: 657-63. http://dx.doi.org/10.1016/j.solener.2008.10.021 DOI: https://doi.org/10.1016/j.solener.2008.10.021
Bales C, Drück H, Jaehnig D, et al. Solar heating systems for houses – a design handbook for solar combisystems. IEA 2003.
Thür A. Compact solar combisystem–high efficiency by minimizing temperatures. Technical University of Denmark 2007.
Haller MY, Cruickshank CA, Streicher W, Harrison SJ, Andersen E, Furbo S. Methods to determine stratification efficiency of thermal energy storage processes. Sol Energy 2009; 83: 1847-60. http://dx.doi.org/10.1016/j.solener.2009.06.019 DOI: https://doi.org/10.1016/j.solener.2009.06.019
Glembin J, Rockendorf G. Simulation and evaluation of stratified discharging and charging devices in combined solar thermal systems. Sol Energy 2012; 86: 407-20. http://dx.doi.org/10.1016/j.solener.2011.10.013 DOI: https://doi.org/10.1016/j.solener.2011.10.013
Brown N, Lai F. Enhanced thermal stratification in a liquid storage tank with a porous manifold. Sol Energy 2011; 85: 1409-17. http://dx.doi.org/10.1016/j.solener.2011.03.024 DOI: https://doi.org/10.1016/j.solener.2011.03.024
Panaras G, Mathioulakis E, Belessiotis V. Investigation of the performance of a combined solar thermal heat pump hot water system. Sol Energy 2013; 93: 169-82. http://dx.doi.org/10.1016/j.solener.2013.03.027 DOI: https://doi.org/10.1016/j.solener.2013.03.027
Bourke G, Bansal P. New test method for gas boosters with domestic solar water heaters. Sol Energy 2012; 86: 78-86. http://dx.doi.org/10.1016/j.solener.2011.09.004 DOI: https://doi.org/10.1016/j.solener.2011.09.004
deKeizer C. Simulation-based long-term fault detection of solar thermal systems.Kassel University 2012.
Krause M. Optimierungskonzept für grosse solarintegrierte Wärmeversorgungsanlagen. University Kassel 2003.
Augsten E. Sonne Wind & Wärme 2012; 3: 10-1.
Ullrich S. Erneuerbare Energien, Das Magazin 2013; 2.
Haller Y. Combined solar and pellet heating systems – Improvement of energy efficiency by advanced heat storage techniques, hydraulics, and control. Graz University of Technology 2010. DOI: https://doi.org/10.18086/eurosun.2010.03.10
Bacher P, Madsen H, Nielsen HA. Online short-term solar power forecasting. Sol Energy 2009; 83: 1772-83. http://dx.doi.org/10.1016/j.solener.2009.05.016 DOI: https://doi.org/10.1016/j.solener.2009.05.016
Fernandez-Jimenez LA, Munoz-Jimenez A, Falces A, et al. Short-term power forecasting system for photovoltaic plants. Renewable Energy 2012; 44: 311-7. http://dx.doi.org/10.1016/j.renene.2012.01.108 DOI: https://doi.org/10.1016/j.renene.2012.01.108
Girodo M. Solarstrahlungsvorhersage auf der Basis numerischer Wettermodelle. Carl von Ossietzky Universitaet Oldenburg 2006.
Perez R, Kivalov S, Schlemmer J, Hemker K Jr., Renne D, Hoff TE. Validation of short and medium term operational solar radiation forecasts in the US. Sol Energy 2010; 84: 2161-72. http://dx.doi.org/10.1016/j.solener.2010.08.014 DOI: https://doi.org/10.1016/j.solener.2010.08.014
Mathiesen P, Kleissl J. Evaluation of numerical weather prediction for intra-day solar forecasting in the continental United States. Sol Energy 2011; 85: 967-77. http://dx.doi.org/10.1016/j.solener.2011.02.013 DOI: https://doi.org/10.1016/j.solener.2011.02.013
Lorenz E, Remund J, Müller SC, et al. Benchmarking of different approaches to forecast solar irradiance. In 24th European PV Sol Energy Conf Proc 2009.
Wang X, Guo P, Huang X. A review of wind power forecasting models. Energy Proc 2011; 12: 770-8. http://dx.doi.org/10.1016/j.egypro.2011.10.103 DOI: https://doi.org/10.1016/j.egypro.2011.10.103
Marquez R, Coimbra CF. Forecasting of global and direct solar irradiance using stochastic learning methods, ground experiments and the NWS database. Sol Energy 2013; 91: 327-36. http://dx.doi.org/10.1016/j.solener.2012.09.018 DOI: https://doi.org/10.1016/j.solener.2012.09.018
Grünenfelder WJ, Tödtli J. The use of weather predictions and dynamic programming in the control of solar domestic hot water systems. In Melecon, Madrid, Spain 1985.
Andrade G, Pagano D, Alvarez J, Berenguel M. A practical NMPC with robustness of stability applied to distributed solar power plants. Sol Energy 2013; 92: 106-22. http://dx.doi.org/10.1016/j.solener.2013.02.013 DOI: https://doi.org/10.1016/j.solener.2013.02.013
Barigozzi G, Bonetti G, Franchini G, Perdichizzi A, Ravelli S. Thermal performance prediction of a solar hybrid gas turbine. Sol Energy 2012; 86: 2116-27. http://dx.doi.org/10.1016/j.solener.2012.04.014 DOI: https://doi.org/10.1016/j.solener.2012.04.014
Camacho E, Gallego A. Optimal operation in solar trough plants: a case study. Sol Energy 2013; 95: 106-17. http://dx.doi.org/10.1016/j.solener.2013.05.029 DOI: https://doi.org/10.1016/j.solener.2013.05.029
Kraas B, Schroedter-Homscheidt M, Madlener R. Economic merits of a state-of-the-art concentrating solar power forecasting system for participation in the Spanish electricity market. Sol Energy 2013; 93: 244-55. http://dx.doi.org/10.1016/j.solener.2013.04.012 DOI: https://doi.org/10.1016/j.solener.2013.04.012
Wittmann M, Eck M, Pitz-Paal R, Müller-Steinhagen H. Methodology for optimized operation strategies of solar thermal power plants with integrated heat storage. Sol Energy 2011; 85: 653-9. http://dx.doi.org/10.1016/j.solener.2010.11.024 DOI: https://doi.org/10.1016/j.solener.2010.11.024
Halvgaard R, Bacher P, Perers B, et al. Model predictive control for a smart solar tank based on weather and consumption forecasts. Energy Proc 2012; 30: 270-8. http://dx.doi.org/10.1016/j.egypro.2012.11.032 DOI: https://doi.org/10.1016/j.egypro.2012.11.032
Kicsiny R, Farkas I. Improved differential control for solar heating systems. Sol Energy 2012; 86: 3489-98. http://dx.doi.org/10.1016/j.solener.2012.08.003 DOI: https://doi.org/10.1016/j.solener.2012.08.003
Ferhatbegovic T, Zucker G, Palensky P. Model based predictive control for a solar-thermal system. In IEEE Africon Conference Proceedings 2011. DOI: https://doi.org/10.1109/AFRCON.2011.6071992
Dott R, Haller MY, Ruschenburg J, Ochs F, Bony J. The reference framework for system simulations of the IEA SHC Task 44 / HPP Annex 38 part A and part B: Buildings and space heat load. IEA 2012. DOI: https://doi.org/10.18777/ieashc-task44-2013-0006
Heimrath R. Simulation, Optimierung und Vergleich solarthermischer Anlagen zur Raumwärmeversorgung für Mehrfamilienhäuser. Graz University of Technology 2004.
Meteonorm 7.0.21.5, Global meteorological database for engineers, planners and education, software and Data on CD-ROM; Meteotest 2013.
Pichler MF, Fucak S, Frankovic B. Low temperature solar thermal domestic hot water potential of Croatia’s islands and coastal regions. In Proceedings EUROSUN 2010; 2010. DOI: https://doi.org/10.18086/eurosun.2010.13.16
Hazami M, Kooli S, Naili N, Farhat A. Long-term performances prediction of an evacuated tube solar water heating system used for single-family households under typical Nord-African climate. Sol Energy 2013; 94: 283-98. http://dx.doi.org/10.1016/j.solener.2013.05.020 DOI: https://doi.org/10.1016/j.solener.2013.05.020
Oldewurtel F, Parisio A, Jones CN, et al. Use of model predictive control and weather forecasts for energy efficient building climate control. Energy Buildings 2012; 45: 15-27. http://dx.doi.org/10.1016/j.enbuild.2011.09.022 DOI: https://doi.org/10.1016/j.enbuild.2011.09.022
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2014 Journal of Technology Innovations in Renewable Energy
This work is licensed under a Creative Commons Attribution 4.0 International License.
Policy for Journals/Articles with Open Access
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are permitted and encouraged to post links to their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work
Policy for Journals / Manuscript with Paid Access
Authors who publish with this journal agree to the following terms:
- Publisher retain copyright .
- Authors are permitted and encouraged to post links to their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work .