Potential Performance Enhancement of a Solar Combisystem with an Intelligent Controller

Authors

  • Martin F. Pichler Graz University of Technology, Institute of Thermal Engineering, Inffeldgasse 25/B, 8010 Graz, Austria
  • Hermann Schranzhofer Graz University of Technology, Institute of Thermal Engineering, Inffeldgasse 25/B, 8010 Graz, Austria
  • Andreas Heinz Graz University of Technology, Institute of Thermal Engineering, Inffeldgasse 25/B, 8010 Graz, Austria
  • Richard Heimrath Graz University of Technology, Institute of Thermal Engineering, Inffeldgasse 25/B, 8010 Graz, Austria

DOI:

https://doi.org/10.6000/1929-6002.2014.03.03.4

Keywords:

Solar thermal, predictive, weather forecast, renewable, auxiliary energy.

Abstract

Solar thermal systems in residential buildings are generally controlled by two-level controllers, which activate solar thermal or at times with low solar radiation auxiliary energy supply into a thermal storage. Simple controllers do not have any information on actual or expected solar radiation. This leads to interference of auxiliary- and solar heat supply, which reduces the share of solar thermal energy fed into the thermal storage. Increasing accuracy of weather forecast data suggests incorporation of this information in the control algorithm. This work analyzes the maximum potential performance enhancement when applying such an intelligent predictive control. Two solar thermal systems with one auxiliary source respectively are designed in TRNSYS – these systems represent the base case. Further, a number of simulations are conducted with minor variations for the plant parameters – this gives generic results for different system configurations. In addition, each system configuration is altered to mimic the behavior of a plant with intelligent predictive control. Comparison of results indicates an improvement potential up to 10% for annual solar fractions and up to 30% for monthly solar fractions. The performance bound with respect to the annual auxiliary energy savings is approximately 8%.

References

Streicher W. Teilsolare Raumheizung – Auslegung und hydraulische Integration. Graz University of Technology 1996.

Streicher W, Heimrath R. Analysis of system reports of Task 26 for sensitivity of parameters. Graz University of Technology 2003.

Heimrath R, Haller M. IEA SHC-Task 32, Subtask A, The reference heating system, the template solar system. Graz University of Technology 2007.

Raffenel Y, Fabrizio E, Virgone J, Blanco E, Filippi M. Integrated solar heating systems: From initial sizing procedure to dynamic simulation. Sol Energy 2009; 83: 657-63. http://dx.doi.org/10.1016/j.solener.2008.10.021 DOI: https://doi.org/10.1016/j.solener.2008.10.021

Bales C, Drück H, Jaehnig D, et al. Solar heating systems for houses – a design handbook for solar combisystems. IEA 2003.

Thür A. Compact solar combisystem–high efficiency by minimizing temperatures. Technical University of Denmark 2007.

Haller MY, Cruickshank CA, Streicher W, Harrison SJ, Andersen E, Furbo S. Methods to determine stratification efficiency of thermal energy storage processes. Sol Energy 2009; 83: 1847-60. http://dx.doi.org/10.1016/j.solener.2009.06.019 DOI: https://doi.org/10.1016/j.solener.2009.06.019

Glembin J, Rockendorf G. Simulation and evaluation of stratified discharging and charging devices in combined solar thermal systems. Sol Energy 2012; 86: 407-20. http://dx.doi.org/10.1016/j.solener.2011.10.013 DOI: https://doi.org/10.1016/j.solener.2011.10.013

Brown N, Lai F. Enhanced thermal stratification in a liquid storage tank with a porous manifold. Sol Energy 2011; 85: 1409-17. http://dx.doi.org/10.1016/j.solener.2011.03.024 DOI: https://doi.org/10.1016/j.solener.2011.03.024

Panaras G, Mathioulakis E, Belessiotis V. Investigation of the performance of a combined solar thermal heat pump hot water system. Sol Energy 2013; 93: 169-82. http://dx.doi.org/10.1016/j.solener.2013.03.027 DOI: https://doi.org/10.1016/j.solener.2013.03.027

Bourke G, Bansal P. New test method for gas boosters with domestic solar water heaters. Sol Energy 2012; 86: 78-86. http://dx.doi.org/10.1016/j.solener.2011.09.004 DOI: https://doi.org/10.1016/j.solener.2011.09.004

deKeizer C. Simulation-based long-term fault detection of solar thermal systems.Kassel University 2012.

Krause M. Optimierungskonzept für grosse solarintegrierte Wärmeversorgungsanlagen. University Kassel 2003.

Augsten E. Sonne Wind & Wärme 2012; 3: 10-1.

Ullrich S. Erneuerbare Energien, Das Magazin 2013; 2.

Haller Y. Combined solar and pellet heating systems – Improvement of energy efficiency by advanced heat storage techniques, hydraulics, and control. Graz University of Technology 2010. DOI: https://doi.org/10.18086/eurosun.2010.03.10

Bacher P, Madsen H, Nielsen HA. Online short-term solar power forecasting. Sol Energy 2009; 83: 1772-83. http://dx.doi.org/10.1016/j.solener.2009.05.016 DOI: https://doi.org/10.1016/j.solener.2009.05.016

Fernandez-Jimenez LA, Munoz-Jimenez A, Falces A, et al. Short-term power forecasting system for photovoltaic plants. Renewable Energy 2012; 44: 311-7. http://dx.doi.org/10.1016/j.renene.2012.01.108 DOI: https://doi.org/10.1016/j.renene.2012.01.108

Girodo M. Solarstrahlungsvorhersage auf der Basis numerischer Wettermodelle. Carl von Ossietzky Universitaet Oldenburg 2006.

Perez R, Kivalov S, Schlemmer J, Hemker K Jr., Renne D, Hoff TE. Validation of short and medium term operational solar radiation forecasts in the US. Sol Energy 2010; 84: 2161-72. http://dx.doi.org/10.1016/j.solener.2010.08.014 DOI: https://doi.org/10.1016/j.solener.2010.08.014

Mathiesen P, Kleissl J. Evaluation of numerical weather prediction for intra-day solar forecasting in the continental United States. Sol Energy 2011; 85: 967-77. http://dx.doi.org/10.1016/j.solener.2011.02.013 DOI: https://doi.org/10.1016/j.solener.2011.02.013

Lorenz E, Remund J, Müller SC, et al. Benchmarking of different approaches to forecast solar irradiance. In 24th European PV Sol Energy Conf Proc 2009.

Wang X, Guo P, Huang X. A review of wind power forecasting models. Energy Proc 2011; 12: 770-8. http://dx.doi.org/10.1016/j.egypro.2011.10.103 DOI: https://doi.org/10.1016/j.egypro.2011.10.103

Marquez R, Coimbra CF. Forecasting of global and direct solar irradiance using stochastic learning methods, ground experiments and the NWS database. Sol Energy 2013; 91: 327-36. http://dx.doi.org/10.1016/j.solener.2012.09.018 DOI: https://doi.org/10.1016/j.solener.2012.09.018

Grünenfelder WJ, Tödtli J. The use of weather predictions and dynamic programming in the control of solar domestic hot water systems. In Melecon, Madrid, Spain 1985.

Andrade G, Pagano D, Alvarez J, Berenguel M. A practical NMPC with robustness of stability applied to distributed solar power plants. Sol Energy 2013; 92: 106-22. http://dx.doi.org/10.1016/j.solener.2013.02.013 DOI: https://doi.org/10.1016/j.solener.2013.02.013

Barigozzi G, Bonetti G, Franchini G, Perdichizzi A, Ravelli S. Thermal performance prediction of a solar hybrid gas turbine. Sol Energy 2012; 86: 2116-27. http://dx.doi.org/10.1016/j.solener.2012.04.014 DOI: https://doi.org/10.1016/j.solener.2012.04.014

Camacho E, Gallego A. Optimal operation in solar trough plants: a case study. Sol Energy 2013; 95: 106-17. http://dx.doi.org/10.1016/j.solener.2013.05.029 DOI: https://doi.org/10.1016/j.solener.2013.05.029

Kraas B, Schroedter-Homscheidt M, Madlener R. Economic merits of a state-of-the-art concentrating solar power forecasting system for participation in the Spanish electricity market. Sol Energy 2013; 93: 244-55. http://dx.doi.org/10.1016/j.solener.2013.04.012 DOI: https://doi.org/10.1016/j.solener.2013.04.012

Wittmann M, Eck M, Pitz-Paal R, Müller-Steinhagen H. Methodology for optimized operation strategies of solar thermal power plants with integrated heat storage. Sol Energy 2011; 85: 653-9. http://dx.doi.org/10.1016/j.solener.2010.11.024 DOI: https://doi.org/10.1016/j.solener.2010.11.024

Halvgaard R, Bacher P, Perers B, et al. Model predictive control for a smart solar tank based on weather and consumption forecasts. Energy Proc 2012; 30: 270-8. http://dx.doi.org/10.1016/j.egypro.2012.11.032 DOI: https://doi.org/10.1016/j.egypro.2012.11.032

Kicsiny R, Farkas I. Improved differential control for solar heating systems. Sol Energy 2012; 86: 3489-98. http://dx.doi.org/10.1016/j.solener.2012.08.003 DOI: https://doi.org/10.1016/j.solener.2012.08.003

Ferhatbegovic T, Zucker G, Palensky P. Model based predictive control for a solar-thermal system. In IEEE Africon Conference Proceedings 2011. DOI: https://doi.org/10.1109/AFRCON.2011.6071992

Dott R, Haller MY, Ruschenburg J, Ochs F, Bony J. The reference framework for system simulations of the IEA SHC Task 44 / HPP Annex 38 part A and part B: Buildings and space heat load. IEA 2012. DOI: https://doi.org/10.18777/ieashc-task44-2013-0006

Heimrath R. Simulation, Optimierung und Vergleich solarthermischer Anlagen zur Raumwärmeversorgung für Mehrfamilienhäuser. Graz University of Technology 2004.

Meteonorm 7.0.21.5, Global meteorological database for engineers, planners and education, software and Data on CD-ROM; Meteotest 2013.

Pichler MF, Fucak S, Frankovic B. Low temperature solar thermal domestic hot water potential of Croatia’s islands and coastal regions. In Proceedings EUROSUN 2010; 2010. DOI: https://doi.org/10.18086/eurosun.2010.13.16

Hazami M, Kooli S, Naili N, Farhat A. Long-term performances prediction of an evacuated tube solar water heating system used for single-family households under typical Nord-African climate. Sol Energy 2013; 94: 283-98. http://dx.doi.org/10.1016/j.solener.2013.05.020 DOI: https://doi.org/10.1016/j.solener.2013.05.020

Oldewurtel F, Parisio A, Jones CN, et al. Use of model predictive control and weather forecasts for energy efficient building climate control. Energy Buildings 2012; 45: 15-27. http://dx.doi.org/10.1016/j.enbuild.2011.09.022 DOI: https://doi.org/10.1016/j.enbuild.2011.09.022

Downloads

Published

2014-08-29

How to Cite

Pichler, M. F., Schranzhofer, H., Heinz, A., & Heimrath, R. (2014). Potential Performance Enhancement of a Solar Combisystem with an Intelligent Controller. Journal of Technology Innovations in Renewable Energy, 3(3), 107–119. https://doi.org/10.6000/1929-6002.2014.03.03.4

Issue

Section

Articles