Influence of Magnetic Frequency on the Thermal Behaviour of Heat Transfer Equipment

Authors

  • Samuel Sami University of Nevada, 4505 S. Maryland Pkwy, Las Vegas, NV 89154, USA

DOI:

https://doi.org/10.6000/1929-6002.2014.03.04.4

Keywords:

Magnetic field, heat transfer, enhancement, refrigerant mixtures.

Abstract

This paper presents a description of the mathematical model developed to predict the natural frequency of a particular refrigerant or refrigerant mixture and magnetic field frequency using the one-dimensional fluid flow conservation equations. The results show the dependence of the Nusselt number on the Reynolds number in the presence and absence of magnetic field. However, the results also provide evidence of enhanced heat transfer and heat flux under magnetic field compared to without magnetic field. In addition, the results presented in the paper clearly provide evidence that the heat transmission has been consistently enhanced when magnetic field is applied. It also appears that heat transfer enhancement is greater at higher Nusselt numbers.

References

Sami SM, Comeau J. Two phase flow convective condensation of cefrigerant mixtures under gas/liquid injection. Int J Energy Res 2005; 29. DOI: https://doi.org/10.1002/er.1089

Sami SM, Comeau J. Influence of gas/liquid injection on two phase flow convective boiling of refrigerant mixtures. Int J Energy Res 2004; 28: 847. http://dx.doi.org/10.1002/er.1000 DOI: https://doi.org/10.1002/er.1000

Sami SM, Comeau J. Modelling of two phase flow pressure drop of refrigerant mixtures under liquid/gas injection conditions. Int Comm Heat Mass Transfer 2004; 31(7): 939. http://dx.doi.org/10.1016/j.icheatmasstransfer.2004.05.004 DOI: https://doi.org/10.1016/j.icheatmasstransfer.2004.05.004

Kim KH, Hyun JM. Buoyant convection in cubical enclosure under time-periodic magnetizing force. Int J Heat Mass Transfer 2004; 47: 5211. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2004.06.015 DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2004.06.015

Sami SM, Comeau J. Impact of liquid injection on pressure drop of refrigerant mixtures inside enhanced surface tubing. Int Comm Heat Mass Transfer 2003; 30(8): 1091. http://dx.doi.org/10.1016/S0735-1933(03)00175-1 DOI: https://doi.org/10.1016/S0735-1933(03)00175-1

Sami SM, Aucoin S. Behaviour of refrigerant mixtures with gas/liquid injection. Int J Energy Res 2003; 27(2): 1265. http://dx.doi.org/10.1002/er.941 DOI: https://doi.org/10.1002/er.941

Sami SM, Aucoin S. Study of liquid injection impact on the performance of new refrigerant mixtures. Int J Energy Res 2003; 27(2); 121. http://dx.doi.org/10.1002/er.862 DOI: https://doi.org/10.1002/er.862

Sami SM, Aucoin S. Effect of magnetic field on the performance of new refrigerant mixtures. Int J Energy Res 2003; 27(3): 203. http://dx.doi.org/10.1002/er.868 DOI: https://doi.org/10.1002/er.868

Sami SM, Comeau J. Study of viscosity and thermal conductivity effects on condensation characteristics of some new alternative refrigerant mixture. Int J Energy Res 2003; 27: 63. http://dx.doi.org/10.1002/er.859 DOI: https://doi.org/10.1002/er.859

Wang LB, Nobuko, Wakaanna NI. Control of natural convection in non- and low conducting diamagnetic fluids in a cubical enclosure using inhomogeneous Magnetic Fields with different Directions. Chem Eng Sci 2002; 57: 1867-1876. http://dx.doi.org/10.1016/S0009-2509(02)00090-8 DOI: https://doi.org/10.1016/S0009-2509(02)00090-8

Sami SM, Comeau J. Influence of thermophysical properties on two phase flow convective boiling of refrigerant mixtures. J Appl Thermal Eng 2002; 22: 1535. http://dx.doi.org/10.1016/S1359-4311(02)00089-3 DOI: https://doi.org/10.1016/S1359-4311(02)00089-3

Kim SK, Kim SY, Choi YD. Resonance of natural convection in a side heated enclosure with mechanically oscillating bottom wall. Int J Heat Mass Transfer 2002; 45: 3155. http://dx.doi.org/10.1016/S0017-9310(02)00030-3 DOI: https://doi.org/10.1016/S0017-9310(02)00030-3

Khaldi F, Gillon P. Étude Éxperimentale et numérique de la convention theromagnétique dans un fluide non électroconducteur. C.R. Acd Sci t. 2001; 329: Série II b, p. 357-362. DOI: https://doi.org/10.1016/S1620-7742(01)01339-3

Sami SM, Desjardins D, Maltais H. Prediction of capillary tubes with alternative refrigerants to CFC-502. Int J Energy Res 2001; 25: 1249. http://dx.doi.org/10.1002/er.751 DOI: https://doi.org/10.1002/er.751

Sami SM, Maltais H. Experimental analysis of capillary tubes behaviour with some HCFC-22 alternative refrigerants to HCFC-22. Int J Energy Res 2001; 25: 1233. http://dx.doi.org/10.1002/er.750 DOI: https://doi.org/10.1002/er.750

Qi J, Wakayanna NI, Ataka M. Magnetic suppression of convection in protein crystal growth processes. J Crystal Growth 2001; 232: 132-137. http://dx.doi.org/10.1016/S0022-0248(01)01147-2 DOI: https://doi.org/10.1016/S0022-0248(01)01147-2

Sami SM, Desjardins D. Boiling characteristics of ternary mixtures inside enhanced surface tubing. Int Comm Heat Mass Transfer J 2000; 27(8): 1047. http://dx.doi.org/10.1016/S0735-1933(00)00192-5 DOI: https://doi.org/10.1016/S0735-1933(00)00192-5

Sami SM, Desjardins D. Heat transfer of ternary mixtures inside enhanced Surface Tubing. Int Comm Heat Mass Transfer J 2000; 27(6): 855. http://dx.doi.org/10.1016/S0735-1933(00)00166-4 DOI: https://doi.org/10.1016/S0735-1933(00)00166-4

Sami SM, Desjardins D. Performance comparative study of new alternatives to R 502 inside air/refrigerant enhanced surface tubing. Int J Energy Res 2000; 24: 177. http://dx.doi.org/10.1002/(SICI)1099-114X(200002)24:2<177::AID-ER580>3.0.CO;2-A DOI: https://doi.org/10.1002/(SICI)1099-114X(200002)24:2<177::AID-ER580>3.0.CO;2-A

Kim HS, Kuwwashara K, Hyun JM. Prediction of the resonance frequency of natural convection in an enclosure with time-periodic heating imposed side wall. J Heat Mass Transfer 1998; 41: 3157. http://dx.doi.org/10.1016/S0017-9310(98)00019-2

McLinden MO. NIST Thermodynamic properties of refrigerant and refrigerant mixtures data base. 1998; Version 6.01, NIST, Gaithersburg, ND.

Lage JL, Bejan A. The Resonance of natural convection in a enclosure heated periodically from inside. J Heat Mass Transfer 1993; 36: 2027. http://dx.doi.org/10.1016/S0017-9310(05)80134-6 DOI: https://doi.org/10.1016/S0017-9310(05)80134-6

Sang Kwak HS, Kuwahara K, Hyun JM. Prediction of the resonance frequency of natural convection in an Enclosure with-periodic heated imposed on one sidewall. J Heat Mass Transfer 1998; 41: 3157. http://dx.doi.org/10.1016/S0017-9310(98)00019-2 DOI: https://doi.org/10.1016/S0017-9310(98)00019-2

Kays WH. Numerical solutions for laminar flow heat transfer in circular tubes. Trans, ASME 1955; Vol. 77. DOI: https://doi.org/10.1115/1.4014661

Cengel, Yunus A, Ghajar, Afshin J. Heat and mass transfer: Fundamentals and Applications McGraw-Hill 2010; 4th Edition.

Nellis G, Klein S. Heat transfer (Cambridge), 2009; p. 663. DOI: https://doi.org/10.1017/CBO9780511841606

Downloads

Published

2014-12-08

How to Cite

Sami, S. (2014). Influence of Magnetic Frequency on the Thermal Behaviour of Heat Transfer Equipment . Journal of Technology Innovations in Renewable Energy, 3(4), 177–184. https://doi.org/10.6000/1929-6002.2014.03.04.4

Issue

Section

Articles