Unravelling Methodologies for a Rational Lignin Valorisation Using Heterogeneously Catalysed Protocols

Authors

  • Rafael Luque Departamento de Química Orgánica, Universidad de Córdoba, Campus de Excelencia Agroalimentario (CeiA3) de Rabanales, Ctra Nnal IV-A, Km 396, E-14014 Córdoba

DOI:

https://doi.org/10.6000/1929-6002.2015.04.04.4

Keywords:

Lignin, depolymerisation, heterogeneous catalysis, chemicals, fuels, materials

Abstract

Lignin depolymerisation has recently a great deal of attention from scientists and companies worldwide due to the extensive possibilities of this recalcitrant material for the production of chemicals, fuels and materials. The natural complexity and stability of lignin bonds makes lignin depolymerization a highly challenging task. Several efforts have been directed towards a more profound understanding of the structure and composition of lignin in order to devise pathways and selectively cleave bridging bonds to break down the biopolymer into useful compounds. The present contribution aims to provide a series of key points in the field of lignin depolymerisation to provide an overview to the field for starting researchers.

References

Zakzeski J, Bruijnincx PCA, Jongerius AL, Weckhuysen BM. Chem Rev 2010; 110: 3552-3599. http://dx.doi.org/10.1021/cr900354u DOI: https://doi.org/10.1021/cr900354u

Pandey MP, Kim CS. Chem Eng Technol 2011; 34: 29-41. http://dx.doi.org/10.1002/ceat.201000270 DOI: https://doi.org/10.1002/ceat.201000270

a) Aizenshtadt MA, Bogolitsyn KG. Khimiya Rastitel'nogo Syr'ya 2009; 5-18;

b) Zoia L, Orlandi M, Argyropoulos DS. J Agricultural Food Chem 2008; 56: 10115-10122; http://dx.doi.org/10.1021/jf801955b DOI: https://doi.org/10.1021/jf801955b

c) Guerra A, Norambuena M, Freer J, Argyropoulos DS. J Natural Prod 2008; 71: 836-841; http://dx.doi.org/10.1021/np800080s DOI: https://doi.org/10.1021/np800080s

d) Crestini C, Argyropoulos DS. Bioorg Med Chem 1998; 6: 2161-2169. http://dx.doi.org/10.1016/S0968-0896(98)00173-4 DOI: https://doi.org/10.1016/S0968-0896(98)00173-4

Sergeev AG, Hartwig JF. Science 2011; 332: 439-442. http://dx.doi.org/10.1126/science.1200437 DOI: https://doi.org/10.1126/science.1200437

Li C, Zheng M, Wang A, Zhang T. Energy Environ Sci 2012; 5: 6383-6390. http://dx.doi.org/10.1039/C1EE02684D DOI: https://doi.org/10.1039/C1EE02684D

Gosselink RJA, Teunissen W, van Dam JEG, De Jong E, Gellerstedt G, Scott EL, Sanders JPM. Biores Technol 2012; 106: 173-177. http://dx.doi.org/10.1016/j.biortech.2011.11.121 DOI: https://doi.org/10.1016/j.biortech.2011.11.121

a) Argyropoulos DS. Proceedings of the International Chemical Congress of Pacific Basin Societies (Pacifichem), Honolulu (Hawai), USA, December 2010;

b) Nakamura T, Kawamoto H, Saka S. J Wood Chem Technol 2007; 27: 121-133. http://dx.doi.org/10.1080/02773810701515143 DOI: https://doi.org/10.1080/02773810701515143

Binder JB, Gray MJ, White JF, Zhang ZC, Holladay JE. Biomass Bioenergy 2009; 33: 1122-1130. http://dx.doi.org/10.1016/j.biombioe.2009.03.006 DOI: https://doi.org/10.1016/j.biombioe.2009.03.006

Guerra A, Filpponen I, Lucia LA, Saquing C, Baumberger S, Argyropoulos DS. J Agricultural Food Chem 2006; 54: 5939-5947. http://dx.doi.org/10.1021/jf060722v DOI: https://doi.org/10.1021/jf060722v

a) Gnanakaran S. Abstracts of the 242nd American Chemical Society National Meeting, Denver, Colorado, 2011;

b) Kandanarachchi PH, Autrey T, Franz JA. J Org Chem 2002; 67: 7937-7945. http://dx.doi.org/10.1021/jo025581k DOI: https://doi.org/10.1021/jo025581k

Roberts VM, Knapp RT, Li X, Lercher JA. ChemCatChem 2010; 2; 1407-1410. DOI: https://doi.org/10.1002/cctc.201000181

Roberts VM, Knapp RT, Li X, Lercher JA. Appl Catal B 2010; 95: 71-77. http://dx.doi.org/10.1016/j.apcatb.2009.12.010 DOI: https://doi.org/10.1016/j.apcatb.2009.12.010

Roberts VM, Stein V, Reiner T, Lemonidou A, Li X, Lercher JA. Chem Eur J 2011; 17: 5939-5948. http://dx.doi.org/10.1002/chem.201002438 DOI: https://doi.org/10.1002/chem.201002438

a) Liguori L, Barth T. J Anal Appl Pyrolysis 2011; 92: 477-484; http://dx.doi.org/10.1016/j.jaap.2011.09.004 DOI: https://doi.org/10.1016/j.jaap.2011.09.004

b) Yan N, Zhao C, Dyson PJ, Wang C, Liu L, Kou Y. ChemSusChem 2008; 1: 626-629. http://dx.doi.org/10.1002/cssc.200800080 DOI: https://doi.org/10.1002/cssc.200800080

Horacek J, Homola F, Kubickova I, Kubicka D. Catal Today 2012; 179: 191-198. http://dx.doi.org/10.1016/j.cattod.2011.06.031 DOI: https://doi.org/10.1016/j.cattod.2011.06.031

Wang X, Richter U, Rinaldi R. Proceedings of the 1st International Conference on Catalysis for Biorefineries, Malaga (Spain) 2011.

a) Hepditch MM, Thring RW. Canadian J Chem Eng 2000; 78: 226-231; http://dx.doi.org/10.1002/cjce.5450780129 DOI: https://doi.org/10.1002/cjce.5450780129

b) Vouri A, Niemela M. Holzforschung 1988; 42: 327-334; http://dx.doi.org/10.1515/hfsg.1988.42.5.327 DOI: https://doi.org/10.1515/hfsg.1988.42.5.327

c) Davoudzadeh F, Smith B, Avni E, Coughlin RW. Holzforschung 1985; 39: 159-166. http://dx.doi.org/10.1515/hfsg.1985.39.3.159 DOI: https://doi.org/10.1515/hfsg.1985.39.3.159

Corma A. Chem Rev 1995; 95: 559-614. http://dx.doi.org/10.1021/cr00035a006 DOI: https://doi.org/10.1021/cr00035a006

Koda K, Gaspar AR, Yu L, Argyropoulos DS. Holzforschung 2005; 59: 612-619. http://dx.doi.org/10.1515/HF.2005.099 DOI: https://doi.org/10.1515/HF.2005.099

Green Photo-active Nanomaterials: Sustainable Energy and Environmental Remediation, Eds. N. Nuraje, R. Asmatulu, G. Mul, RSC Green Chemistry Series 2016.

Downloads

Published

2015-12-18

How to Cite

Luque, R. (2015). Unravelling Methodologies for a Rational Lignin Valorisation Using Heterogeneously Catalysed Protocols. Journal of Technology Innovations in Renewable Energy, 4(4), 147–151. https://doi.org/10.6000/1929-6002.2015.04.04.4

Issue

Section

Articles