Trend Topic Analysis for Wind Energy Researches: A Data Mining Approach Using Text Mining

Authors

  • Yunus Eroglu Department of Industrial Engineering, Faculty of Engineering, Gaziantep University
  • Serap U. Seçkiner Department of Industrial Engineering, Faculty of Engineering, Gaziantep University

DOI:

https://doi.org/10.6000/1929-6002.2016.05.02.2

Keywords:

Wind energy research, text mining, concept extraction, clustering

Abstract

This study reviews and analyses the recent research and development and trends in the applications of wind energy and it also discusses and summarizes the topic. We show the usage and the influence of text mining on the different aspects of wind energy systems especially for hot topics and trends of wind energy area. Text mining provides the state of the art in this area that will be a good guidance for future research work. The main results achieved from the study have shown that the text mining technique are adequate for serving as a proof of concept and as a test-bed for deriving requirements for the development of more generally applicable text mining tools and services within wind energy science.

References

Ananiadou S, Rea B, Okazaki N, Procter R, Thomas J. Supporting systematic reviews using text mining. Soc Sci Comput Rev 2009; 27: 509-23. http://dx.doi.org/10.1177/0894439309332293 DOI: https://doi.org/10.1177/0894439309332293

Chalmers I. Trying to do more good than harm in policy and practice: the role of rigorous, transparent, up-to-date evaluations. Ann Am Acad Pol Soc Sci 2003; 589: 22-40. http://dx.doi.org/10.1177/0002716203254762 DOI: https://doi.org/10.1177/0002716203254762

Kostoff RN, Tshiteya R, Pfeil KM, Humenik JA, Karypis G. Science and Technology Text Mining: Electric Power Sources 2004. http://dx.doi.org/10.1016/S0010-9452(08)70885-2 DOI: https://doi.org/10.21236/ADA421789

Kostoff RN, Buchtel HA, Andrews J, Pfeil KM. The hidden structure of neuropsychology: text mining of the Journal Cortex: 1991-2001. Cortex 2005; 41: 103-15. DOI: https://doi.org/10.1016/S0010-9452(08)70885-2

Miner G, Elder J, Hill T, Nisbet R, Delen D, Fast A. Practical Text Mining and Statistical Analysis for Non-structured Text Data Applications. 1st ed. Academic Press 2012.

Witten IH. Adaptive text mining: inferring structure from sequences. J Discrete Algorithms 2004; 2: 137-59. http://dx.doi.org/10.1016/S1570-8667(03)00084-4 DOI: https://doi.org/10.1016/S1570-8667(03)00084-4

Hearst MA. Untangling text data mining. In: Proceedings of the 37th Annual Meeting of the Association for Computational Linguistics on Computational Linguistics [Internet]. Stroudsburg, PA, USA: Association for Computational Linguistics; 1999 [cited2014 Mar 13]. p. 3-10. http://dx.doi.org/10.3115/1034678.1034679 DOI: https://doi.org/10.3115/1034678.1034679

Losiewicz P, Oard DW, Kostoff RN. Textual data mining to support science and technology management. J Intell Inf Syst 2000; 15: 99-119. http://dx.doi.org/10.1023/A:1008777222412 DOI: https://doi.org/10.1023/A:1008777222412

Zhu D, Porter AL. Automated extraction and visualization of information for technological intelligence and forecasting. Technol Forecast Soc Change 2002; 69: 495-506. http://dx.doi.org/10.1016/S0040-1625(01)00157-3 DOI: https://doi.org/10.1016/S0040-1625(01)00157-3

Drake M. Encyclopedia of library and information science. 2nd Ed. CRC Press 2003.

Ghazinoory S, Ameri F, Farnoodi S. An application of the text mining approach to select technology centers of excellence. Technol Forecast Soc Change 2013; 80: 918-31. http://dx.doi.org/10.1016/j.techfore.2012.09.001 DOI: https://doi.org/10.1016/j.techfore.2012.09.001

Jun S, Park S-S, Jang D-S. Document clustering method using dimension reduction and support vector clustering to overcome sparseness. Expert Syst Appl 2014; 41: 3204-12. http://dx.doi.org/10.1016/j.eswa.2013.11.018 DOI: https://doi.org/10.1016/j.eswa.2013.11.018

Kostoff RN, Eberhart HJ, Toothman DR. Database tomography for information retrieval. J Inf Sci 1997; 23: 301-11. http://dx.doi.org/10.1177/016555159702300404 DOI: https://doi.org/10.1177/016555159702300404

Greengrass E. Information Retrieval: A Survey [Internet]. University of Maryland; 2000 [cited 2014 Mar 13]. 224 p. Available from: http://www.csee.umbc.edu/csee/research/ cadip/readings/IR.report.120600.book.pdf

Swanson DR, Smalheiser NR. An interactive system for finding complementary literatures: a stimulus to scientific discovery. Artif Intell 1997; 91: 183-203. DOI: https://doi.org/10.1016/S0004-3702(97)00008-8

Shavinina LV. The International Handbook on Innovation. Elsevier 2003; p.1202.

Goldman JA, Chu WW, Parker DS, Goldman RM. Term domain distribution analysis: a data mining tool for text databases. Methods Inf Med 1999; 38: 96-101. DOI: https://doi.org/10.1055/s-0038-1634180

Kostoff RN. Bilateral asymmetry prediction. Med Hypotheses 2003; 61: 265-6. http://dx.doi.org/10.1016/S0306-9877(03)00167-1 DOI: https://doi.org/10.1016/S0306-9877(03)00167-1

Kostoff RN, Green KA, Toothman DR, Humenik JA. Database tomography applied to an aircraft science and technology investment strategy. J Aircr 2000; 37: 727-30. http://dx.doi.org/10.2514/2.2659 DOI: https://doi.org/10.2514/2.2659

Viator JA, Pestorius FM. Investigating trends in acoustics research from 1970–1999. J Acoust Soc Am 2001; 109: 1779-83. http://dx.doi.org/10.1121/1.1366711 DOI: https://doi.org/10.1121/1.1366711

Kostoff RN, Shlesinger MF, Malpohl G. Fractals text mining using bibliometrics and database tomography. Fractals 2004; 12: 1-16. http://dx.doi.org/10.1142/S0218348X04002343 DOI: https://doi.org/10.1142/S0218348X04002343

Kostoff RN, Shlesinger MF, Tshiteya R. Nonlinear dynamics text mining using bibliometrics and database tomography. Int J Bifurc Chaos 2004; 14: 61-92. http://dx.doi.org/10.1142/S0218127404009089 DOI: https://doi.org/10.1142/S0218127404009089

Huang C-J, Liao J-J, Yang D-X, Chang T-Y, Luo Y-C. Realization of a news dissemination agent based on weighted association rules and text mining techniques. Expert Syst Appl 2010; 37: 6409-13. http://dx.doi.org/10.1016/j.eswa.2010.02.078 DOI: https://doi.org/10.1016/j.eswa.2010.02.078

Kostoff RN, del Río JA, Humenik JA, García EO, Ramírez AM. Citation mining: Integrating text mining and bibliometrics for research user profiling. J Am Soc Inf Sci Technol 2001; 52: 1148-56. http://dx.doi.org/10.1002/asi.1181 DOI: https://doi.org/10.1002/asi.1181

Kostoff RN, Tshiteya R, Pfeil KM, Humenik JA. Electrochemical power text mining using bibliometrics and database tomography. J Power Sources 2002; 110: 163-76. http://dx.doi.org/10.1016/S0378-7753(02)00233-1 DOI: https://doi.org/10.1016/S0378-7753(02)00233-1

Kongthon A. A text mining framework for discovering technological intelligence to support science and technology management [Internet] [Ph.D.]. Georgia Institute of Technology; 2004 [cited 2014 Jan 21]. Available from: http://202.28.199.34/multim/3126708.pdf

Kostoff RN, Tshiteya R, Pfeil KM, Humenik JA, Karypis G. Power source roadmaps using bibliometrics and database tomography. Energy 2005; 30: 709-30. http://dx.doi.org/10.1016/j.energy.2004.04.058 DOI: https://doi.org/10.1016/j.energy.2004.04.058

de Miranda Santo M, Coelho GM, dos Santos DM, Filho LF. Text mining as a valuable tool in foresight exercises: A study on nanotechnology. Technol Forecast Soc Change 2006; 73: 1013-27. http://dx.doi.org/10.1016/j.techfore.2006.05.020 DOI: https://doi.org/10.1016/j.techfore.2006.05.020

Kostoff RN, Koytcheff RG, Lau CGY. Global nanotechnology research literature overview. Technol Forecast Soc Change 2007; 74: 1733-47. http://dx.doi.org/10.1016/j.techfore.2007.04.004 DOI: https://doi.org/10.1016/j.techfore.2007.04.004

Malheiros V, Hohn E, Pinho R, Mendonca M. A Visual Text Mining approach for Systematic Reviews. In: First International Symposium on Empirical Software Engineering and Measurement, 2007 ESEM 2007. 2007; pp. 245-54. http://dx.doi.org/10.1109/esem.2007.21 DOI: https://doi.org/10.1109/ESEM.2007.21

Delen D, Crossland MD. Seeding the survey and analysis of research literature with text mining. Expert Syst Appl 2008; 34: 1707-20. http://dx.doi.org/10.1016/j.eswa.2007.01.035 DOI: https://doi.org/10.1016/j.eswa.2007.01.035

Kajikawa Y, Yoshikawa J, Takeda Y, Matsushima K. Tracking emerging technologies in energy research: Toward a roadmap for sustainable energy. Technol Forecast Soc Change 2008; 75: 771-82. http://dx.doi.org/10.1016/j.techfore.2007.05.005 DOI: https://doi.org/10.1016/j.techfore.2007.05.005

Kim H, Lee JY. Exploring the emerging intellectual structure of archival studies using text mining: 2001-2004. J Inf Sci 2008; 34: 356-69. http://dx.doi.org/10.1177/0165551507086260 DOI: https://doi.org/10.1177/0165551507086260

Kostoff RN. Literature-Related Discovery (LRD): Introduction and background. Technol Forecast Soc Change 2008; 75: 165-85. http://dx.doi.org/10.1016/j.techfore.2007.11.004 DOI: https://doi.org/10.1016/j.techfore.2007.11.004

Kostoff RN, Briggs MB, Solka JL, Rushenberg RL. Literature-related discovery (LRD): Methodology. Technol Forecast Soc Change 2008; 75: 186-202. http://dx.doi.org/10.1016/j.techfore.2007.11.010 DOI: https://doi.org/10.1016/j.techfore.2007.11.010

Liu JS, Kuan C-H, Cha S-C, Chuang W-L, Gau GJ, Jeng J-Y. Photovoltaic technology development: A perspective from patent growth analysis. Sol Energy Mater Sol Cells 2011; 95: 3130-6. http://dx.doi.org/10.1016/j.solmat.2011.07.002 DOI: https://doi.org/10.1016/j.solmat.2011.07.002

Thomas J, McNaught J, Ananiadou S. Applications of text mining within systematic reviews. Res Synth Methods 2011; 2: 1-14. http://dx.doi.org/10.1002/jrsm.27 DOI: https://doi.org/10.1002/jrsm.27

Kostoff RN. Literature-related discovery and innovation — update. Technol Forecast Soc Change 2012; 79: 789-800. http://dx.doi.org/10.1016/j.techfore.2012.02.002 DOI: https://doi.org/10.1016/j.techfore.2012.02.002

Tu Y-N, Seng J-L. Indices of novelty for emerging topic detection. Inf Process Manag 2012; 48: 303-25. http://dx.doi.org/10.1016/j.ipm.2011.07.006 DOI: https://doi.org/10.1016/j.ipm.2011.07.006

Küçük D, Arslan Y. Semi-automatic construction of a domain ontology for wind energy using Wikipedia articles. Renew Energy 2014; 62: 484-9. http://dx.doi.org/10.1016/j.renene.2013.08.002 DOI: https://doi.org/10.1016/j.renene.2013.08.002

Yoon J. Detecting weak signals for long-term business opportunities using text mining of Web news. Expert Syst Appl 2012; 39: 12543-50. http://dx.doi.org/10.1016/j.eswa.2012.04.059 DOI: https://doi.org/10.1016/j.eswa.2012.04.059

Miller TW. Data and text mining: a business applications approach. Upper Saddle River, N.J.: Pearson Prentice Hall 2005.

Romero C, Ventura S. Educational data mining: A survey from 1995 to 2005. Expert Syst Appl 2007; 33(1): 135-46. http://dx.doi.org/10.1016/j.eswa.2006.04.005 DOI: https://doi.org/10.1016/j.eswa.2006.04.005

Rexer Analytics. Rexer Analytics 6th Data Miner Survey - 2013 [Internet]. 2014 [cited 2014 Oct 22]. Available from: http://www.rexeranalytics.com/Data-Miner-Survey-Results-2013.html

Downloads

Published

2016-07-27

How to Cite

Eroglu, Y., & U. Seçkiner, S. (2016). Trend Topic Analysis for Wind Energy Researches: A Data Mining Approach Using Text Mining. Journal of Technology Innovations in Renewable Energy, 5(2), 44–58. https://doi.org/10.6000/1929-6002.2016.05.02.2

Issue

Section

Articles