Investigation of Different Carbon Materials with Different Coating Methods as Micro Porous Layer for Proton Exchange Membrane Fuel Cells
DOI:
https://doi.org/10.6000/1929-6002.2013.02.01.4Keywords:
Micro porous layer (MPL), proton exchange membrane fuel cell (PEMFC), gas diffusion layer (GDL), spray coating, doctor bladed coatingAbstract
In this work, two types of carbon - Vulcan XC-72R, and vapor-grown carbon fiber (VGCF, 7μm in length and 100 nm in diameter) were investigated as materials composing a micro porous layer (MPL). These carbon materials were either sprayed or doctor bladed on commercial carbon paper (GDS 340, CeTech Co., Ltd., Taiwan) to form an MPL with various carbon loadings and various polytetrafluoroethene (PTFE) contain ratio. All of the home-made GDLs were assembly with commercial catalyst coated membranes (CCMs, General Optics Corp., Taiwan) for fuel cell performance test. All of the membrane electrode assembly (MEA) samples were investigated by the polarization curve and Electrochemical Impedance Spectroscopy (EIS).
References
Barbir F, Yazici S. Status and development of PEM fuel cell technology. Int J Energ Res 2008; 32: 369-78. http://dx.doi.org/10.1002/er.1371 DOI: https://doi.org/10.1002/er.1371
Wang Y, Al Shakhshir S, Li X. Development and impact of sandwich wettability structure for gas distribution media on PEM fuel cell performance. Appl Energ 2011; 88: 2168-75. http://dx.doi.org/10.1016/j.apenergy.2010.12.054 DOI: https://doi.org/10.1016/j.apenergy.2010.12.054
Zamel N, Litovsky E, Shakhshir S, Li X, Kleiman J. Measurement of in-plane thermal conductivity of carbon paper diffusion media in the temperature range of −20°C to +120°C. Appl Energ 2011; 88: 3042-50. DOI: https://doi.org/10.1016/j.apenergy.2011.02.037
Yuan W, Tang Y, Yang X, Wan Z. Porous metal materials for polymer electrolyte membrane fuel cells – A review. Appl Energ 2012; 94: 309-29. http://dx.doi.org/10.1016/j.apenergy.2012.01.073 DOI: https://doi.org/10.1016/j.apenergy.2012.01.073
Lim C. Effects of hydrophobic polymer content in GDL on power performance of a PEM fuel cell. Electrochim Acta 2004; 49: 4149-56. http://dx.doi.org/10.1016/j.electacta.2004.04.009 DOI: https://doi.org/10.1016/j.electacta.2004.04.009
Jordan LR, Shukla AK, Behrsing T, Avery NR, Muddle BC, Forsyth M. Diffusion layer parameters influencing optimal fuel cell performance. J Power Sources 2000; 86: 250-4. http://dx.doi.org/10.1016/S0378-7753(99)00489-9 DOI: https://doi.org/10.1016/S0378-7753(99)00489-9
Jordan LR, Shukla AK, Behrsing T, Avery NR, Muddle BC, Forsyth M. Effect of diffusion-layer morphology on the performance of polymer electrolyte fuel cells operating at atmospheric pressure. J Appl Electrochem 2000; 30: 641-6. http://dx.doi.org/10.1023/A:1004088402496 DOI: https://doi.org/10.1023/A:1004088402496
Passalacqua E, Squadrito G, Lufrano F, Patti A, Giorgi L. Effects of the diffusion layer characteristics on the performance of polymer electrolyte fuel cell electrodes. J Appl Electrochem 2001; 31: 449-54. http://dx.doi.org/10.1023/A:1017547112282 DOI: https://doi.org/10.1023/A:1017547112282
Yu J, Islam MN, Matsuura T, Tamano M, Hayashi Y, Hori M. Improving the Performance of a PEMFC with Ketjenblack EC-600JD Carbon Black as the Material of the Microporous Layer. Electrochem Solid-State Lett 2005; 8: A320. http://dx.doi.org/10.1149/1.1904504 DOI: https://doi.org/10.1149/1.1904504
Wang X, Zhang H, Zhang J, Xu H, Tian Z, Chen J, et al. Micro-porous layer with composite carbon black for PEM fuel cells. Electrochim Acta 2006; 51: 4909-15. http://dx.doi.org/10.1016/j.electacta.2006.01.048 DOI: https://doi.org/10.1016/j.electacta.2006.01.048
Yan W-M, Wu D-K, Wang X-D, Ong A-L, Lee D-J, Su A. Optimal microporous layer for proton exchange membrane fuel cell. J Power Sources 2010; 195: 5731-4. http://dx.doi.org/10.1016/j.jpowsour.2010.03.041 DOI: https://doi.org/10.1016/j.jpowsour.2010.03.041
Park S, Lee J-W, Popov BN. Effect of carbon loading in microporous layer on PEM fuel cell performance. J Power Sources 2006; 163: 357-63. http://dx.doi.org/10.1016/j.jpowsour.2006.09.020 DOI: https://doi.org/10.1016/j.jpowsour.2006.09.020
Chang H-M, Lin C-W, Chang M-H, Shiu H-R, Chang W-C, Tsau F-H. Optimization of polytetrafluoroethylene content in cathode gas diffusion layer by the evaluation of compression effect on the performance of a proton exchange membrane fuel cell. J Power Sources 2011; 196: 3773-80. http://dx.doi.org/10.1016/j.jpowsour.2010.12.090 DOI: https://doi.org/10.1016/j.jpowsour.2010.12.090
Ge J, Higier A, Liu H. Effect of gas diffusion layer compression on PEM fuel cell performance. J Power Sources 2006; 159: 922-7. http://dx.doi.org/10.1016/j.jpowsour.2005.11.069 DOI: https://doi.org/10.1016/j.jpowsour.2005.11.069
Jung GB, Tzeng WJ, Jao TC, Liu YH, Yeh CC. Investigation of porous carbon and carbon nanotube layer for proton exchange membrane fuel cells. Appl Energ 2012. DOI: https://doi.org/10.1016/j.apenergy.2012.08.045
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2013 Journal of Technology Innovations in Renewable Energy
This work is licensed under a Creative Commons Attribution 4.0 International License.
Policy for Journals/Articles with Open Access
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are permitted and encouraged to post links to their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work
Policy for Journals / Manuscript with Paid Access
Authors who publish with this journal agree to the following terms:
- Publisher retain copyright .
- Authors are permitted and encouraged to post links to their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work .