Kitchen Waste Residues asKitchen Waste Residues as Potential Renewable Biomass Resources for the Production of Multiple Fungal Carbohydrases and Second Generation Bioethanol

Authors

  • Chetna Janveja Department of Microbiology, Panjab University, Chandigarh-160014, India
  • Susheel Singh Rana Department of Microbiology, Panjab University, Chandigarh-160014, India
  • Sanjeev Kumar Soni Department of Microbiology, Panjab University, Chandigarh-160014, India

DOI:

https://doi.org/10.6000/1929-6002.2013.02.02.11

Keywords:

Kitchen waste, Carbohydrases, Pretreatment, Enzymatic hydrolysis, Bioethanol

Abstract

Utilization of kitchen waste, the major portion of municipal solid waste for the coproduction of multiple carbohydrases and bioethanol was investigated in this study. Solid-state fermentation was performed to evaluate the potential of various steam pretreated kitchen waste residues as substrates for the coproduction of cellulolytic, hemicellulolytic, pectinolytic, amylolytic enzymes by a locally isolated strain of Aspergillus niger CJ-5. All the kitchen waste residues simply moistened with water, without the supplementation of exogenous nutrients proved good for the induction of all the enzyme components of a cocktail after 96 h incubation. Of all the substrates evaluated, steam pretreated potato peels induced maximum yields corresponding to 69.0±1.92U CMCase, 16.5±0.54U FPase, 44.0±1.28U β-glucosidase, 999.0±28.90U xylanase, 58.2±2.12U mannanase, 120.0±3.72U pectinase, 31520.0±375.78U α-amylase, 482.8±9.82U glucoamylase/g dry substrate (gds). Saccharification of residues using inhouse produced crude enzyme cocktail resulted in the release of 610±10.56, 570±8.89, 435±6.54, 475±4.56, 445±4.27, 385±4.49, 370±6.89, 490±10.45 mg of total reducing sugars/g of dried potato peels, orange peels, pineapple peels, mausami peels, onion peels, banana stalks, pea pods and composite mixture respectively revealing carbohydrate conversion efficiencies in the range of 97.0-99.4%. After fermentation of released hexoses, alcohol yields ranging from 80±1.069 - 262±7.86 µL/gds were obtained.

 

References

Jorgensen H, Olsson L. Production of cellulase by Penicillium brasilianum IBT 20888: effect of substrate on hydrolytic performance. Enzyme Microb Technol 2006; 38: 381-90. http://dx.doi.org/10.1016/j.enzmictec.2005.06.018 DOI: https://doi.org/10.1016/j.enzmictec.2005.06.018

Leilei G, Peng W, Haijin M. Study on saccharification techniques of seaweed wastes for the transformation of ethanol. Renew Energ 2011; 36: 84-9. http://dx.doi.org/10.1016/j.renene.2010.06.001 DOI: https://doi.org/10.1016/j.renene.2010.06.001

Scharlemann JPW, Laurance WF. How green are biofuels? Environ Sci 2008; 319: 43-4. DOI: https://doi.org/10.1126/science.1153103

del Campo I, Alegría I, Zazpe M, Echeverría M, Echeverría I. Diluted acid hydrolysis pretreatment of agri-food wastes for bioethanol production. Ind Crop Prod 2006; 24: 214-21. http://dx.doi.org/10.1016/j.indcrop.2006.06.014 DOI: https://doi.org/10.1016/j.indcrop.2006.06.014

Suurs RAA, Hekkert MP. Competition between first and second generation technologies: lessons from the formation of a biofuels innovation system in The Netherlands. Energ 2009; 34: 669-79. http://dx.doi.org/10.1016/j.energy.2008.09.002 DOI: https://doi.org/10.1016/j.energy.2008.09.002

Kumar A, Singh LK, Ghosh S. Bioconversion of lignocellulosic fraction of water hyacinth (Eichhornia crassipes) hemicellulose acid hydrolysate to ethanol by Pichia stipitis. Bioresour Technol 2009; 100: 3293-7. http://dx.doi.org/10.1016/j.biortech.2009.02.023 DOI: https://doi.org/10.1016/j.biortech.2009.02.023

Guo GL, Chen WH, Chen WH, Men LC, Hwang WS. Characterization of dilute acid pretreatment of silver grass for ethanol production. Bioresour Technol 2008; 99: 6046-53. http://dx.doi.org/10.1016/j.biortech.2007.12.047 DOI: https://doi.org/10.1016/j.biortech.2007.12.047

Farinas CS, Loyo MM, Junior AB. Finding stable cellulase and xylanase: evaluation of the synergistic effect of pH and temperature. New Biotechnol 2010; 1: 1-6. DOI: https://doi.org/10.1016/j.nbt.2010.10.001

Chandel AK, Singh OV, Chandrasekhar G, Rao LV, Narasu ML. Keydrivers influencing the commercialization of ethanol based biorefineries. J Comm Biotechnol 2010; 16: 239-57. http://dx.doi.org/10.1057/jcb.2010.5 DOI: https://doi.org/10.1057/jcb.2010.5

Sohail M, Naseeb S, Sherwani SK, Sultana S, Aftab S, Shahzad S, et al. Distribution of hydrolytic enzymes among native fungi: Aspergillus the predominant genus of hydrolase producer. Pak J Bot 2009; 41: 2567-82.

Bansal N, Tewari R, Gupta JK, Soni SK, Soni R. A novel strain of Aspergillus niger producing a cocktail of industrial depolymerising enzymes for the production of second generation biofuels. BioRes 2011; 6: 552-69. DOI: https://doi.org/10.15376/biores.6.1.552-569

Soni SK, Batra N, Bansal N, Soni R. Bioconversion of sugarcane bagasse into second generation bioethanol after enzymatic hydrolysis within house produced cellulases from Aspergillus sp. S4B2F. BioRes 2010; 5: 741-58. DOI: https://doi.org/10.15376/biores.5.2.741-757

Galbe M, Zacchi G. A review of the production of ethanol from softwood. Appl Microbiol Biotechnol 2009; 59: 618-28. http://dx.doi.org/10.1007/s00253-002-1058-9 DOI: https://doi.org/10.1007/s00253-002-1058-9

Bhat MK. Cellulases and related enymes in biotechnology. Biotechnol Adv 2000; 18: 355-83. http://dx.doi.org/10.1016/S0734-9750(00)00041-0 DOI: https://doi.org/10.1016/S0734-9750(00)00041-0

da Silva R, Lago ES, Merheb CW, Macchione MM, Park YK, Gomes E. Production of xylanase and CMCase on solid state fermentation in different residues by Thermoascus aurantiacus miehe. Braz J Microbiol 2005; 36: 235-41. http://dx.doi.org/10.1590/S1517-83822005000300006 DOI: https://doi.org/10.1590/S1517-83822005000300006

Han SK, Shin S. Biohydrogen production by anaerobic fermentation of food waste. Int J Hydrogen Energ 2004; 29: 569-77. http://dx.doi.org/10.1016/j.ijhydene.2003.09.001 DOI: https://doi.org/10.1016/j.ijhydene.2003.09.001

Wang QH, Ymamabe H. Suppression of growth of putrefactive and food poisoning bacteria by lactic acid

fermentation of kitchen waste. Process Biochem 2001; 37: 351-7. http://dx.doi.org/10.1016/S0032-9592(01)00217-5 DOI: https://doi.org/10.1016/S0032-9592(01)00217-5

Zhang B, Zhang LL, Zhang SC, Shi HZ, Cai WM. The influence of pH on hydrolysis and acidogenesis of kitchen wastes in two-phase anaerobic digestion. Environ Technol 2005; 26: 329-39. http://dx.doi.org/10.1080/09593332608618563 DOI: https://doi.org/10.1080/09593332608618563

Teather RM, Wood PJ. Use of Congo red polysaccharide interaction in enumeration of cellulolytic bacteria from bovine rumen. Appl Environ Microbiol 1982; 43: 777-80. DOI: https://doi.org/10.1128/aem.43.4.777-780.1982

Phothichittol K, Nitisinprasert S, Keawsompong S. Isolation, screening and identification of mannanase producing microorganisms. Kasetsart J Nat Sci 2006; 40: 26-38.

Reda AB, Hesham MY, Mahmoud AS, Ebtsam ZA. Production of bacterial pectinase(s) from agro-industrial wastes under solid state fermentation conditions. J Appl Sci Res 2008; 41: 1708-21.

Bahadure RB, Agnihotri US, Akarte SR. Assay of population density of amylase producing bacteria from different soil samples contaminated with flowing effluents. Int J Parasitol Res 2010; 2: 9-13. DOI: https://doi.org/10.9735/0975-3702.2.1.9-13

Mandels M, Andreotti RE, Roche C. Measurements of saccharifying cellulases. Biotechnol Biophy Symp 1976; 6: 21-3.

Miller GL. Use of DNS reagent for determination of reducing sugars. Anal Chem 1959; 31: 426-8. http://dx.doi.org/10.1021/ac60147a030 DOI: https://doi.org/10.1021/ac60147a030

Bailey MJ, Biley P, Poutanen K. Inter laboratory testing of methods for assay of xylanase activity. J Biotechnol 1992; 23: 257-70. http://dx.doi.org/10.1016/0168-1656(92)90074-J DOI: https://doi.org/10.1016/0168-1656(92)90074-J

Stålbrand H, Siika-aho M, Viikari L. Purification and characterization of two β-mannanases from Trichoderma reesei. J Biotechnol 1993; 29: 229-42. http://dx.doi.org/10.1016/0168-1656(93)90055-R DOI: https://doi.org/10.1016/0168-1656(93)90055-R

Minjares-Carranco A, Trejo-Aguilar BA, Guillermo A, Viniegra-Gonzalez G. Physiological comparision between pectinase producing mutants of Aspergillus niger adopted either to solid state fermentation or submerged fermentation. Enzyme Microb Technol 1997; 21: 25-31. http://dx.doi.org/10.1016/S0141-0229(96)00212-8 DOI: https://doi.org/10.1016/S0141-0229(96)00212-8

Fuwa H. A new method for micro determination of amylase activity by the use of amylose as substrate. J Biochem 1954; 41: 583-603. DOI: https://doi.org/10.1093/oxfordjournals.jbchem.a126476

Cori GT. Amylo-1,6-glucosidase. Methods Enzymol 1955; 1: 211-4. http://dx.doi.org/10.1016/0076-6879(55)01029-X DOI: https://doi.org/10.1016/0076-6879(55)01029-X

Updegroff DM. Semi micro determination of cellulose in biological materials. Anal Biochem 1969; 32: 420-4. http://dx.doi.org/10.1016/S0003-2697(69)80009-6 DOI: https://doi.org/10.1016/S0003-2697(69)80009-6

Morin LG, Prox J. Single Glucose Oxidase—Peroxidase reagent for two-minute determination of serum glucose. Clin Chem 1973; 19: 959-62. DOI: https://doi.org/10.1093/clinchem/19.9.959

Caputi A, Veda M, Brown T. Spectrophotometric determination of ethanol in wine. Am J Enol Vitic 1968; 19: 160-5. DOI: https://doi.org/10.5344/ajev.1968.19.3.160

Geiser DM, Klich MA, Frisvad JC, Peterson SW, Varga J, Samson RA. The current status of species recognition and identification in Aspergillus. Stud Mycol 2007; 59: 1-10. http://dx.doi.org/10.3114/sim.2007.59.01 DOI: https://doi.org/10.3114/sim.2007.59.01

Klich MA. Identification of common Aspergillus species. Ponsen & Looijen, The Netherlands 2002.

Singhania RR, Sukumaran RK, Pillai A, Prema P, Szakacs G, Pandey A. Solid-state fermentation of lignocellulosic substrates for cellulase production by Trichoderma reesei NRRL 11460. Indian J Biotechnol 2006; 5: 332-6.

Pandey A, Soccol CR, Rodriguez-Leon JA, Nigam P. Factors that influence on solid state fermentation, in: Pandey A, Ed. Solid state fermentation in Biotechnology: Fundamentals and Applications. Asiatech Publishers Inc., New Delhi 2001; pp. 21-9.

Kaur G, Satyanarayana T. Production of extracellular pectinolytic, cellulolytic, xylanolytic enzyme by thermophilic mould Sporotrichum thermophile Apinis in solid state fermentation. Indian J Biotechnol 2004; 3: 552-7.

Karmakar M, Ray R. Extra cellular endoglucanase production by Rhizopus oryzae in solid and liquid state fermentation of agro waste. Asian J Biotechnol 2010; 2: 27-50. http://dx.doi.org/10.3923/ajbkr.2010.27.36 DOI: https://doi.org/10.3923/ajbkr.2010.27.36

Hendriks ATWM, Zeeman G. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 2009; 100: 10-8. http://dx.doi.org/10.1016/j.biortech.2008.05.027 DOI: https://doi.org/10.1016/j.biortech.2008.05.027

Damisa D, Ameh J, Umoh VJ. Effect of chemical pretreatment of some lignocellulosic wastes on the recovery of cellulase from Aspergillus niger AH3 mutant. Afr J Biotechnol 2008; 7: 2444-50.

Alvira P, Tomas PE, Ballesteros M, Negro MJ. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis, A review. Bioresour Technol 2010; 101: 4851-61. http://dx.doi.org/10.1016/j.biortech.2009.11.093 DOI: https://doi.org/10.1016/j.biortech.2009.11.093

Doppelbauer R, Esterbauer H, Steiner W, Lafferty RM, Steinmuller H. The use of lignocellulosic wastes for production of cellulase by Trichoderma reesei. Appl Microbiol Biotechnol 1987; 26: 485-94. http://dx.doi.org/10.1007/BF00253537 DOI: https://doi.org/10.1007/BF00253537

Dhillon GS, Oberoi HS, Kaur S, Bansal S, Brar SK. Value-addition of agricultural wastes for augmented cellulase and xylanase production through solid-state tray fermentation employing mixed-culture of fungi. Ind Crops Prod 2011; 34: 1160-7. http://dx.doi.org/10.1016/j.indcrop.2011.04.001 DOI: https://doi.org/10.1016/j.indcrop.2011.04.001

Martín C, Marce M, Thomsen AB. Comparison of wet oxidation and steam explosion as pretreatment methods for bioethanol production from sugarcane bagasse. Biores 2008; 3: 670-83. DOI: https://doi.org/10.15376/biores.3.3.670-683

Ikram-ul-Haq, Javed MM, Khan TS. An innovative approach for hyper production of cellulolytic and hemicellulolytic enzymes by consortium of A. niger and T. viride MSK- 10. Afr J Biotechnol 2006; 5: 609-14.

Sridevi A, Narasimha G, Reddy BR. Production of cellulases by Aspergillus niger on natural and pretreated lignocellulosic waste. Int J Microbiol 2009; 7: 87-9. DOI: https://doi.org/10.5580/1884

Kovacs K, Macrelli S, Szakacs G, Zacchi G. Enzymatic hydrolysis of steam-pretreated lignocellulosic materials with Trichoderma atroviride enzymes produced in-house. Biotechnol Biofuel 2009; 2: 5-14. http://dx.doi.org/10.1186/1754-6834-2-14 DOI: https://doi.org/10.1186/1754-6834-2-14

Lin Y, Tanaka S. Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol Biotechnol 2006; 69: 627-42. http://dx.doi.org/10.1007/s00253-005-0229-x DOI: https://doi.org/10.1007/s00253-005-0229-x

Buaban B, Inoue H, Yano S, Tanapongpipat S, Ruanglek V, Champreda V, et al, Bioethanol production from ball milled bagasse using an on-site produced fungal enzyme cocktail and xylose-fermenting Pichia stipitis. J Biosci Bioeng 2010; 110: 18-25. http://dx.doi.org/10.1016/j.jbiosc.2009.12.003 DOI: https://doi.org/10.1016/j.jbiosc.2009.12.003

Baig MMV, Baig MLB, Baig MLA, Yasmeen M. Saccharification of banana agro-waste by cellulolytic enzymes. Afr J Biotechnol 2004; 3: 447-50. DOI: https://doi.org/10.5897/AJB2004.000-2088

Li A, Antizar-Ladislao B, Khraisheh M. Bioconversion of municipal solid waste to glucose for bio-ethanol production. Bioprocess Biosyst Eng 2007; 30: 189-96. http://dx.doi.org/10.1007/s00449-007-0114-3 DOI: https://doi.org/10.1007/s00449-007-0114-3

Deswal D, Khasa YP, Kuhad RC. Optimization of cellulase production by a brown rot fungus Fomitopsis sp. RCK2010 under solid state fermentation. BioRes 2011; 102: 6065-72. http://dx.doi.org/10.1016/j.biortech.2011.03.032 DOI: https://doi.org/10.1016/j.biortech.2011.03.032

Moon HC, Song S, Kim JC, Shirai Y, Lee DH, Kim JK, et al. Enzymatic hydrolysis of food waste and ethanol fermentation. Int J Energy Res 2009; 33: 164-72. http://dx.doi.org/10.1002/er.1432 DOI: https://doi.org/10.1002/er.1432

Mukhopadhyay S, Chaterjee NC. Bioconversion of water hyacinth hydrolysate into ethanol. Biores 2010; 5: 1301-10. DOI: https://doi.org/10.15376/biores.5.2.1301-1310

Chen M, Xia L, Xue P. Enzymatic hydrolysis of corncob and ethanol production from cellulosic hydrolysate. Int Biodeter Biodegr 2007; 59: 85-9. http://dx.doi.org/10.1016/j.ibiod.2006.07.011 DOI: https://doi.org/10.1016/j.ibiod.2006.07.011

Gupta R, Sharma KK, Kuhad RC. Separate hydrolysis and fermentation (SHF) of Prosopis juliflora, woody substrate for the production of cellulosic ethanol by Saccharomyces cerevisiae and Pichia stipitis NCIM 3498. Bioresour Technol 2009; 100: 1214-20. http://dx.doi.org/10.1016/j.biortech.2008.08.033 DOI: https://doi.org/10.1016/j.biortech.2008.08.033

Xiros C, Christakopoulos P. Enhanced ethanol production from brewer's spent grain by a Fusarium oxysporum consolidated system. Biotechnol Biofuel 2009; 2: 1-12. http://dx.doi.org/10.1186/1754-6834-2-4 DOI: https://doi.org/10.1186/1754-6834-2-4

Downloads

Published

2013-05-30

How to Cite

Janveja, C., Rana, S. S., & Soni, S. K. (2013). Kitchen Waste Residues asKitchen Waste Residues as Potential Renewable Biomass Resources for the Production of Multiple Fungal Carbohydrases and Second Generation Bioethanol. Journal of Technology Innovations in Renewable Energy, 2(2), 186–200. https://doi.org/10.6000/1929-6002.2013.02.02.11

Issue

Section

Articles