In Vitro Micropropagation of Jatropha curcas L. from Bud Aggregates

Authors

  • Samson Daudet Medza Mve Université de Liège-Gembloux Agro-Bio Tech, Unité de Phytotechnie tropicale et Horticulture. Passage des Déportés, 2 BE-5030 Gembloux, Belgium
  • Guy Mergeai Université de Liège-Gembloux Agro-Bio Tech, Unité de Phytotechnie tropicale et Horticulture. Passage des Déportés, 2 BE-5030 Gembloux, Belgium
  • Philippe Druart Centre de Recherche Agronomique Wallon, Département Sciences du vivant Unité Génie biologique chaussée de Charleroi, 234 BE-5030 Gembloux, Belgium
  • Jean Pierre Baudoin Université de Liège-Gembloux Agro-Bio Tech, Unité de Phytotechnie tropicale et Horticulture. Passage des Déportés, 2 BE-5030 Gembloux, Belgium
  • André Toussaint Université de Liège-Gembloux Agro-Bio Tech, Unité de Phytotechnie tropicale et Horticulture. Passage des Déportés, 2 BE-5030 Gembloux, Belgium

DOI:

https://doi.org/10.6000/1929-6002.2013.02.02.7

Keywords:

Jatropha curcas L., bud aggregates, nodal explant, regeneration, in vitro culture

Abstract

Entire plants were regenerated from nodes explants of Jatropha curcas L. following a procedure of bud aggregate induction on MS (Murashige and Skoog) medium supplemented with 25 mg.l-1 citric acid, 12.2 mg.l-1 adenine sulfate, 15 mg.l-1 L-arginine, 2.46 µM IBA (indole-3-butyric acid), 30 g.l-1 sucrose and 7 g.l-1 of agar, and enriched with different balances of BA (benzyladenine) and L-glutamine. The histological studies performed on aggregates showed that the buds result from both the development of axillary buds and adventitious budding starting from underlying tissues of the explant. The culture medium containing 6.65 µM BA and 25 mg.l‑1 L-glutamine gave the best results with an average of 64 buds per aggregate after three weeks for all accessions tested. The buds developed into shoots when placed in an MS medium supplemented with 2.21 µM BA, 5.70 µM IAA (indole-3-acetic acid) and 15 mg.l-1 L‑arginine. These shoots were isolated and then rooted in MS containing 2.46 µM of IBA, 2% sucrose and 0.7% agar. The entire process took 13 weeks with a 98% survival rate in terms of plantlets acclimatization. We obtained a multiplication rate of 13 buds per explant and per subculture which is the double of those obtained in other recent works based on the micropropagation of J. curcas from node explants. This protocol is economically more profitable.

References

Leela T, Naresh B, Srikanth Reddy M, Madhusudhan NC, Cherku PD. Morphological, physico-chemical and micropropagation studies in Jatropha curcas L. and RAPD analysis of the regenerants. Appl Energy 2011; 88(6): 2071-9.

http://dx.doi.org/10.1016/j.apenergy.2010.12.080 DOI: https://doi.org/10.1016/j.apenergy.2010.12.080

Openshaw K. A review of Jatropha curcas: an oil plant of unfulfilled promise. Biomass Bioenergy 2000; 19: 1-15.

http://dx.doi.org/10.1016/S0961-9534(00)00019-2 DOI: https://doi.org/10.1016/S0961-9534(00)00019-2

Jha T, Mukherjee P, Datta M. Somatic embryogenesis in Jatropha curcas Linn., an important biofuel plant. Plant Biotechnol Reports 2007; 1(3): 135-40.

http://dx.doi.org/10.1007/s11816-007-0027-2 DOI: https://doi.org/10.1007/s11816-007-0027-2

Nyamai DO, Omuodo LO. Jatropha curcas: the untapped potential in eastern and central Africa. manual Pau, editor. Nairobi, Kenya 49 p: Vanilla-Jatropha Development Foundation 2007.

Murashige T, Skoog F. A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiologia Plantarum 1962; 15(3): 473-97.

http://dx.doi.org/10.1111/j.1399-3054.1962.tb08052.x DOI: https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

Medza Mve SD, Mergeai G, Jean-Pierre B, André T. Amélioration du taux de multiplication in vitro de Jatropha curcas L. Tropicultura 2010; 28(4): 200-4.

Ruzin SE. Plant microtechnique and microscopy. New York, USA, 322 p: Oxford University Press 1999; p. 322.

Sharma S, Sudheer Pamidimarri DVN, Vijay Anand KG, Reddy MP. Assessment of genetic stability in micropropagules of Jatropha curcas genotypes by RAPD and AFLP analysis. Industrial Crops Products 2011; 34(1): 1003-9.

http://dx.doi.org/10.1016/j.indcrop.2011.03.008 DOI: https://doi.org/10.1016/j.indcrop.2011.03.008

Caboni E, Lauri P, D'Angeli S. In vitro plant regeneration from callus of shoot apices in apple shoot culture. Plant Cell Reports 2000; 19(8): 755-60.

http://dx.doi.org/10.1007/s002999900189 DOI: https://doi.org/10.1007/s002999900189

Datta MM, Mukherjee P, Ghosh B, Jha TB. In vitro clonal propagation of biodiesel plant (Jatropha curcas L.). Curr Sci 2007; 93(10): 1438-42.

Piéron S, Belaizi M, Boxus P. Nodule culture, a possible morphogenetic pathway in Cichorium intybus L. propagation. Scientia Horticulturae 1993; 53(1–2): 1-11.

http://dx.doi.org/10.1016/0304-4238(93)90132-A DOI: https://doi.org/10.1016/0304-4238(93)90132-A

Vasanth K, Lakshmiprabha A, Jayabalan N. Amino acids enhancing plant regeneration from cotyledon and embryonal axis of peanut (Arachis hypogaea L.). Indian J Crop Sci 2006; 1(1-2): 79-83.

Vasudevan A, Selvaraj N, Ganapathi A, Kasthurirengan S, Ramesh Anbazhagan V, Manickavasagam M. Glutamine: a suitable nitrogen source for enhanced shoot multiplication in Cucumis sativus L. Biologia Plantarum 2004; 48(1): 125-8.

http://dx.doi.org/10.1023/B:BIOP.0000024288.82679.50 DOI: https://doi.org/10.1023/B:BIOP.0000024288.82679.50

Miflin BJ, Habash DZ. The role of glutamine synthetase and glutamate dehydrogenase in nitrogen assimilation and possibilities for improvement in the nitrogen utilization of crops. J Exp Bot 2002; 53: 979-87.

http://dx.doi.org/10.1093/jexbot/53.370.979 DOI: https://doi.org/10.1093/jexbot/53.370.979

Peoples MB, Gifford RM. Long distance transport of carbon and nitrogen from sources to sinks in higher plants. In: Dennis D, Turpin DH, editors. Plant Physiology, Biochemistry and Molecular Biology. New York, USA1993; pp. 434-47.

Mercier H, Kerbauy GB. Endogenous IAA and cytokinin levels in bromeliad shoots as influenced by glutamine and ammonium nitrate treatments. Rev Bras Fisiol Veg 1998; 10: 225-8.

Coruzzi G, Last R. Amino acids. In: Buchanan B, Groissem W, Jones R, Eds. Biochemistry and Biology of Plants. USA: American Society of Plant Physiologists 2000; pp. 358-410.

Staden J, Crouch NR. Benzyladenine and derivatives-their significance and interconversion in plants. Plant Growth Regulation 1996; 19: 153-75.

http://dx.doi.org/10.1007/BF00024582 DOI: https://doi.org/10.1007/BF00024582

Ashihara H, Stasolla C, Loukanina N, Thorpe TA. Purine metabolism during white spruce somatic embryo development: salvage of adenine, adenosine, and ionosine. Plant Sci 2001; 160: 647-57.

http://dx.doi.org/10.1016/S0168-9452(00)00441-6 DOI: https://doi.org/10.1016/S0168-9452(00)00441-6

Kakkar RK, Sawhney VK. Polyamine research in plants-a changing perspective. Physiol Plant 2002; 116: 281-92.

http://dx.doi.org/10.1034/j.1399-3054.2002.1160302.x DOI: https://doi.org/10.1034/j.1399-3054.2002.1160302.x

Galston AW, Kaur-Sawhney R. Polyamines as endogenous growth regulators. In: Davies PJ, editor. Plant hormones and their role in plant growth and development. Dordrecht, Netherlands: Martinus Nijhoff 1987; pp. 280-95.

http://dx.doi.org/10.1007/978-94-009-3585-3_15 DOI: https://doi.org/10.1007/978-94-009-3585-3_15

Morcillo F, Aberlenc-Bertossi F, Trouslot P, Hamon S, Duval Y. Characterization of 2S and 7S storage proteins in embryos of oil palm. Plant Sci 1997; 122(2): 141-51.

http://dx.doi.org/10.1016/S0168-9452(96)04555-4 DOI: https://doi.org/10.1016/S0168-9452(96)04555-4

Brassard N, Richer C, Toussignant D, Rioux JA. Multiplication végétative de l'Acer saccharum: contribution à la micropropagation. Can J Forest Res 2003; 4: 682-90.

http://dx.doi.org/10.1139/x02-192 DOI: https://doi.org/10.1139/x02-192

Shrivastava S, Banerjee M. Algal filtrate: A low cost substitute to synthetic growth regulators for direct organogenesis of embryo culture in Jatropha curcas (Ratanjyot). Acta Physiologiae Plantarum 2009; 31(6): 1205-12.

http://dx.doi.org/10.1007/s11738-009-0355-7 DOI: https://doi.org/10.1007/s11738-009-0355-7

Vengadesan G, Ganapathi A, Amutha S, Selvaraj N. In vitro propagation of Acacia species: a review. Plant Sci 2002; 163: 663-71.

http://dx.doi.org/10.1016/S0168-9452(02)00144-9 DOI: https://doi.org/10.1016/S0168-9452(02)00144-9

Mukherjee P, Varshney A, Johnson T, Jha T. Jatropha curcas: a review on biotechnological status and challenges. Plant Biotechnol Reports 2011; 5(3): 197-15.

http://dx.doi.org/10.1007/s11816-011-0175-2 DOI: https://doi.org/10.1007/s11816-011-0175-2

Druart P. Contribution to the development of in vitro mass-production production techniques of woody species that can be used in fruit growing. Gembloux, Belgique: PhD Thesis, Faculté d'Agronomie de Gembloux 1987.

Kumar D, Singh S, Sharma R, Kumar V, Chandra H, Malhotra K. Above-ground morphological predictors of rooting success in rooted cuttings of Jatropha curcas L. Biomass Bioenergy 2011; 35(9): 3891-5.

http://dx.doi.org/10.1016/j.biombioe.2011.06.019 DOI: https://doi.org/10.1016/j.biombioe.2011.06.019

Druart P, Kevers C, Boxus P, Gaspar T. In vitro promotion of root formation by apple leaf buds through darkness effect on endogenous phenols and peroxidases. Zeitschr Pflanzenphysiol 1982; 108: 429-36. DOI: https://doi.org/10.1016/S0044-328X(82)80168-2

Downloads

Published

2013-05-20

How to Cite

Medza Mve, S. D., Mergeai, G., Druart, P., Baudoin, J. P., & Toussaint, A. (2013). In Vitro Micropropagation of Jatropha curcas L. from Bud Aggregates. Journal of Technology Innovations in Renewable Energy, 2(2), 145–154. https://doi.org/10.6000/1929-6002.2013.02.02.7

Issue

Section

Articles