Removal of Acid Fuchsin Dyem from Industrial Effluents Using Green Synthesized Copper Oxide Nanoparticles and their Characterization

Authors

  • V. Anbarasan Department of Chemistry, DMI College of Engineering (Autonomous), Chennai-600123, India
  • P.S. Syed Ibrahim Department of Science and Humanities, Dhanalakshmi College of Engineering (Autonomous), Chennai-601 301, India
  • J. Edward Jeyakumar Department of Chemistry, Rajalakshmi Engineering College (Autonomous), Chennai-602105, India

DOI:

https://doi.org/10.6000/1929-5030.2025.14.01

Keywords:

Amorphophallus Paeoniifolius tuber, Extract, Copper oxide nanoparticles, Characterization, Dye, Adsorption, Kinetics, Thermodynamics

Abstract

Nanoparticles are the spearheads of the rapidly expanding field of nanotechnology. Development of the green synthesis has gained extensive attention as a reliable, sustainable and eco-friendly protocol for synthesizing a wide range of metal and metal oxide nanoparticles. The synthesized copper oxide nanoparticles were characterized by ultraviolet visible spectroscopy (UV-Vis), X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR), Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), Energy Dispersive X-ray (EDX). Adsorption parameters such as Initial dye concentration, Adsorbent dosage, pH, contact time, and temperature have also beenstudied. Adsorption isotherms namely Langmuir, Freundlich, Temkin are used to test the adsorption data; Kinetic studies such as pseudo first order, pseudo second order and thermodynamic parameters were also evaluated. To synthesis copper oxide nanoparticles, a green chemical strategy is employed in the current work. It is an easy, affordable, and effective alternative method. The green copper oxide nanoparticles that were made may be a good choice for removing dye from coloured aqueous solution due to their strong dye adsorption ability. CuO nanoparticle prepared from above mentioned routes is expected to have more extensive applications such as chemical sensor, catalytic, gas sensor, semiconductor etc. This method is the most viable in terms of energy, time, and simplicity. This procedure resulted in the production of copper Oxide nanoparticles on a huge scale.

References

Atar N, Olgun A.Desalination.2009; 249: 109-7. DOI: https://doi.org/10.1016/j.desal.2008.12.045

Akar ST, Balk YY, Tuna O, Akar T. Carbohyd. Polym.2013; 94 (1): 400-9. DOI: https://doi.org/10.1016/j.carbpol.2013.01.062

Arellano-Cárdenas S, López-Cortez S, Cornejo-Mazón M, Mares-Gutiérrez JC.Appl Surf Sci.2013; 280: 74-5. DOI: https://doi.org/10.1016/j.apsusc.2013.04.097

Ahmed S, Ahmad M, Swami B L, Ikram S.J Adv Res. 2016; 7(1): 17-12. DOI: https://doi.org/10.1016/j.jare.2015.02.007

Thomas B, Vithiya, B S M, Prasad T A A, Mohamed S B, Magdalane C M, Kaviyarasu, K, Maaza M.J. Nanosci. Nanotechnol.2019; 19: 2640-9. DOI: https://doi.org/10.1166/jnn.2019.16025

Kumar V, Yadav S K.J. Chem. Technol. Biotechnol. 2009; 84: 151-7.

Sharmila G, Pradeep R S, Sandiya K, Santhiya S, Muthukumaran C, Jeyanthi, J, Kumar N M. Thirumarimurugan M, J. Mol. Struct.2018;1165: 288-5. DOI: https://doi.org/10.1016/j.molstruc.2018.04.011

Sackey J,Nwanya AC, Bashir, AKH, Matinise N, Ngilirabanga J B, Ameh, A E, Coetsee E, Maaza, M.Mater. Chem. Phys. 2020; 244: 122714. DOI: https://doi.org/10.1016/j.matchemphys.2020.122714

Das P, Ghosh S, Ghosh R, Dam S, Baskey M.J. Photochem. Photobiol. 2018; B 189: 66-8. DOI: https://doi.org/10.1016/j.jphotobiol.2018.09.023

Chowdhury R, Khan A, Rashid M H.RSC Adv. 2020; 14374-12. DOI: https://doi.org/10.1039/D0RA01479F

Samari F, Baluchi L, Salehipoor H, Yousefinejad S. Microchem. J. 2019; 150:Article No.104158. DOI: https://doi.org/10.1016/j.microc.2019.104158

Sharma S & Kumar K, J. Disper. Sci. Technol., 41 (2020) 1.

De Padova P, Generosi A, Paci B, Olivieri B, Ottaviani C, Quaresima C, Suber L, Pietrantonio F D, Ventura G D, Pilloni L. Appl. Sci.2020; 10:3819. DOI: https://doi.org/10.3390/app10113819

Singh A,Wadhwa N. Int. J. Pharm. Sci. Rev. Res.2014; 24:55-6.

Gomathi M, Prakasam A, Rajkumar P V.J. Clust. Sci.2019; 30: 995-7. DOI: https://doi.org/10.1007/s10876-019-01559-y

Hamelian M, Zangeneh M M, Amisama A, Varmira K, Veisi HAppl. Organomet. Chem.2018; 32:e4458. DOI: https://doi.org/10.1002/aoc.4458

Xin Q, Fu J, Chen Z, Liu S, Yan Y, Zhang J, Xu Q.J. Environ. Chem. Eng. 2015; 3:1637-11. DOI: https://doi.org/10.1016/j.jece.2015.06.012

Feng J, Li J, Lv W, Xu H, Yang H & Yan W,Met. 2014;191: 66. DOI:10.1016/j.synthmet.2014.02.013. DOI: https://doi.org/10.1016/j.synthmet.2014.02.013

Rani S, Aggarwal M, Kumar M, Sharma S, Kumar D. Water Science.2016; 30: 51-10. DOI: https://doi.org/10.1016/j.wsj.2016.04.001

Pulicherla Yugandhar et.al., Cost Effective, Green Synthesis of Copper Oxide Nanoparticles Using Fruit Extract of Syzygium alternifolium (Wt.) Walp., Characterization and Evaluation of Antiviral Activity. J. Clust. Sci.2018; 29(4): 743-13. DOI: https://doi.org/10.1007/s10876-018-1395-1

Maniam GP, Yusoff MM, Govindan N, Choi KCJ. Clean. Prod.2017; 141: 1023-7. DOI: https://doi.org/10.1016/j.jclepro.2016.09.176

Das D, Nath BC, Phukon P, Dolui S K.Colloids Surf. 2013; B. 101: 430-4. DOI: https://doi.org/10.1016/j.colsurfb.2012.07.002

Amal MI, Ghaida HM, Laila M. Bull. Natl. Res. Cent. 42: Article No, 6(2018).

Mello VS, Faria E A, Alves S M, Scandian C.Tribol. Int. 2020; 150: Article No.106338. DOI: https://doi.org/10.1016/j.triboint.2020.106338

Lalau CM, de Almeida MR, Schmidt EC, Bouzon ZL, Ouriques LC, dos Santos RW, da Costa CH, Vicentini, DS, Matias WG.Protoplasma.2015; 252: 221-9. DOI: https://doi.org/10.1007/s00709-014-0671-7

Son J, Vavra J, Forbes V E.Sci. Total Environ. 2015; 521:183-8. DOI: https://doi.org/10.1016/j.scitotenv.2015.03.093

Zhang G,Bao Y.Energy Proc. 2011;16:1141-6. DOI: https://doi.org/10.1016/j.egypro.2012.01.182

Bardajee GR, Hooshyar Z, Shahidi FE. nt. J. Environ. Sci. Technol.2015; 12: 1737-12. DOI: https://doi.org/10.1007/s13762-014-0732-7

Azouaou N, Sadaoui Z, Djaafri A, Mokaddem H.J. Hazard. Mater.2010; 184:126-9. DOI: https://doi.org/10.1016/j.jhazmat.2010.08.014

Sangon S, Hunt AJ, Attard T M, Mengchang P, Supanchaiyamat N.J. Clean. Prod.2017; 172: 1128-12. DOI: https://doi.org/10.1016/j.jclepro.2017.10.210

Amuda OS, Olayiwola AO, Alade AO, Farombi AG, Adebisi SA.J Environ Protect. 2014; 5: 1352-12. DOI: https://doi.org/10.4236/jep.2014.513129

Mahmoud HR, Ibrahim S M, El-Molla SA. Adv Powder Technol.(2015).

Oladoja N A, Asia I O, Aboluwoye C O, Oladimeji Y B, Ashogbon A O.Turk. J. Eng. Env. Sci.2008; 32: 303-10.

Sharma YC, Singh B, Uma. The Open Environmental Pollution & Toxicology Journal.2009; 1: 74-5.

Ghaedi M, Nasab AG, Khodadoust S, Rajabi M, Azizian S. J. Ind. Eng. Chem.2014; 20: 2317-8. DOI: https://doi.org/10.1016/j.jiec.2013.10.007

Temkin M J, Pyzhev V.Acta Phys.1940;12: 217-6.

Lagergren S. About the theory of so-called adsorption of soluble substances, Kungliga Svenska Vetenskapsakademiens. Handlingar. 1898;24 (4):1-39.

Mckay G.Chem. Eng. Sci.1984; 39 (1): 129-10. DOI: https://doi.org/10.1016/0009-2509(84)80138-4

Published

2025-09-16

How to Cite

Anbarasan, V. ., Ibrahim, P. S. ., & Jeyakumar, J. E. . (2025). Removal of Acid Fuchsin Dyem from Industrial Effluents Using Green Synthesized Copper Oxide Nanoparticles and their Characterization. Journal of Applied Solution Chemistry and Modeling, 14, 1–14. https://doi.org/10.6000/1929-5030.2025.14.01

Issue

Section

General Articles