Excess Properties and Theoretical Evaluation on Ternary Systems of 1-Pentanol in n-Hexane Solution with some Organic Compounds at 313 K Using Ultrasonic Technique
Keywords:
Charge-transfer complex, stability constant, excess acoustic impedance, Chi-square, molecular interactions.Abstract
The parameters like density(ρ), ultrasonic velocity (U), and viscosity (η) were experimentally measured. The excess parameters like adiabatic compressibility, acoustic impedance, free volume, free length, internal pressure and ultrasonic velocity in addition to K value were computed from the experimental data. The variation of these parameters at a constant temperature for the three ternary systems, namely OMP + 1-pentanol+n-hexane, N, N-DMF + 1-pentanol+n-hexane, and MMP + 1-pentanol+n-hexane, have been discussed in the light of molecular interaction. Further, certain theoretical studies are validated with respect to experimental velocities, and the Chi-square test for the goodness of fit is also applied to check the validity of such theoretical models.
References
Rowlinson JS. Liquid and liquid mixtures. 3rd ed. Butterworth Scientific: London; 1982.
Acree WE. Thermodynamic properties of non-electrolytic solutions. Academic Press: New York; 1984.
Jerry March. Advanced organic chemistry. John Wiley: New York; 1992.
Jayakumar S, Karunanithi N, Kannappan V. Indian J pure applied Phys. 1996; 34: 761-6.
Seiichiro Fujisawa, Mariko Ishihara, Yukio murakami, Toshiko Atsumi, Yoshinori Kadoma, Ichro Yokoe. In vivo 2007; 21: 181 – 8.
Murakami Y, Ito S, Atsumi T, Fujisawa S. InVivo 2005; 19: 1039 - 6.
Hirata Y, Murakami M, Shoji Y, Kadoma Y, Fujisawa S. Anticancer Res. 2005; 25: 3367-8.
Okada N, Hirata A, Murakami Y, Shoji M, Sakagami H, Fujisawa S. Anticancer Res. 2005; 25: 3236-35.
Atsumi T, Murakami Y, Shibuya K, Tonosaki K, Fujisawa S. Anticancer Res. 2005; 25: 4029-8.
Murakami Y, Shoji M, Hirata A, Tanaka S, Yokoe I, Fujisawa S. Arch Biochem Biophys. 2005; 434: 326 -7. https://doi.org/10.1016/j.abb.2004.11.013
Murakami Y, Shoji M, Hirata A, Tanaka S, Hanazawa S, YokoeI, Fujisawa S. Arch Biochem Biophys. 2006; 449: 171-8. https://doi.org/10.1016/j.abb.2006.02.005
Fujisawa S, Atsumi T, Murakami Y, Kadoma Y. Arch Immunol Ther Exp (Warsz). 2005; 53: 28-11.
Atsumi T, Fujisawa S, Tonosaki K. A comparative study of the antioxidant/pro-oxidant activities of eugenol and isoeugenol with various concentrations and oxidation conditions. Toxicol in vitro. 2005; 19: 1025-9. https://doi.org/10.1016/j.tiv.2005.04.012
Fujisawa S, Atsumi T, Ishihara M, Kadoma Y, Cytotoxicity. ROS-generation activity and radical-scavenging activity of curcumin and related compounds. Anticancer Res. 2004; 24: 563-4.
Murakami Y, Shoji M, Hanazawa S, Tanaka S, Fujisawa S. Preventive effect of bis-eugenol, a eugenol ortho dimer, on lipopolysaccharide-stimulated nuclear factor kappa B activation and inflammatory cytokine expression in macrophages. Biochem Pharmacol. 2003; 66: 1061-6. https://doi.org/10.1016/S0006-2952(03)00419-2
Ogiwara T, Satoh K, Negoro T, Okayasu H, Sakagami H, Fujisawa S. Inhibition of NO production by activated macrophages by phenol carboxylic acid monomers and polymers with radical scavenging activity. Anticancer Res. 2003; 23: 1317-7.
Ogiwara T, Satoh K, Kadoma Y, Murakami Y, Unten S, Atsumi T, Sakagami H, Fujisawa S. Radical scavenging activity and cytotoxicity of ferulic acid. Anticancer Res. 2002; 22: 11-7.
Fujisawa S, Atsumi T, Satoh K, Sakagami H. Interaction between 2-ethoxy benzoic acid (EBA) and eugenol, and related changes in cytotoxicity, J Dent Res. 2003; 82: 43-5. https://doi.org/10.1177/154405910308200110
Fujisawa S, Atsumi T, Kadoma Y, Sakagami H. Antioxidant and prooxidant action of eugenol-related compounds and their cytotoxicity. Toxicology. 2002; 177: 39-6. https://doi.org/10.1016/S0300-483X(02)00194-4
Fujisawa S, Atsumi T, Satoh K et al. Radical generation, radical-scavenging activity, and cytotoxicity of eugenol-related compounds, In Vitr Mol Toxicol. 2000; 13: 269-12.
Holder AH. Rational design of dental materials using computational chemistry. Transactions of the Fourth International Congress of Dental Materials, Academy of Dental Materials and Japanese Society for Dental Materials and Devices Transaction. 2002; 16: 55-17,
Syed Ibrahim PS, Senthil Murugan J, Chidambaravinayagam S, Edward Jeyakumar J. International Journal of Innovative Technology and Exploring Engineering. 2019; 8(10S):99-7.
National Library of Medicines.
[home page on the internet]
[cited 2020 March 14]. Available from: https://pubchem.ncbi.nim.nih.gov/
Vogel AL. Textbook of Practical organic chemistry. 5th ed. John Wiley: New York; 1989.
Redlich O, Kister AT. Ind Eng Chem. 1948; 40: 345. https://doi.org/10.1021/ie50458a035
Nomoto O. J Phys Soc Jpn. 1958; 13: 1528. https://doi.org/10.1143/JPSJ.13.1524
Van Dael W, Vangeel E. Proc. 1st International Conference on Calorimetry and Thermodynamics: Warsaw. 1969; p. 555.
Junje Z. J Chem Univ Sci Tech. 1984; 14: 298.
Baldev Raj, Rajendran V, Palanichamy P. Science and Technology of ultrasonics. Narosa Publishing House Pvt. Ltd.: New Delhi; 2007.
Pearson K. Fundamentals of Mathematical Statistics., AS Chan and Company: New Delhi; 1978.
Marwein BL., Bhatt SN. Acustica. 1985; 58: 243-8. https://doi.org/10.1111/j.2044-8325.1985.tb00199.x
Kannappan V, Kothai S. Advances of Ultrasonics. 2001: 124-6. https://doi.org/10.1080/00319100290010437
Kannappan V, Jaya Shanthi R, Malar EJP, Phys. Chem. Liq. 2000; 40(4): 507-19.
Kumar R, Mahesh R, Shanmugapriyan B, Kannappan V. Ind. J. Pure. Appl. Phys. 2012; 43: 633-8.
Fort RJ, Moore WR. Trans Faraday Soc. 1965; 61: 2102. https://doi.org/10.1039/tf9656102102
Kannappan AN, Rajendran V. Ind. J. Pure. Appl. Phys. 1992; 30: 240-3.
Sridevi U, Samatha K, Viswanatha Sarma A. J. pure Appl. Ultrason. 2004; 26: 1-11.
Islam MR, Quadri. Thermo. Chim. Act. 1987; 115: 335-7. https://doi.org/10.1016/0040-6031(87)88379-X
Kannappan V, Askar Ali SJ, Abdul Mahaboob PA. Ind. J. Pure. Appl. Phys. 2009; l 47: 97-6.
Babuja S, Oza S. J. Pure and Applied Ultrasonics. 2002; 24: 580-3.
Rama Rao GV, Triveni M, Ramachandran D. Int. J. Eng. Res. 2015; 3 (special issue).
Fakruddin Babavali SK, Shakira P, Srinivasu Ch, Narendra K. Karbala International Journal of Modern Science. 2015; 12: 172-6.
Radha Sirija Maganti, Gayathri Devi Nanduri, Raghu Sai Sarath Dittakavi, Ramachandran Dittakavi, Karbala International Journal of Modern Science. 2018; 4: 126-8. https://doi.org/10.1016/j.kijoms.2017.12.003
Vasantharani P, Muthu Shailaja S, Kannappan AN, Ezhil Pavai R. Journal of Applied Sciences. 2008; 8(12): 2329-4. https://doi.org/10.3923/jas.2008.2329.2332
Downloads
Published
How to Cite
Issue
Section
License
Policy for Journals/Articles with Open Access
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are permitted and encouraged to post links to their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work
Policy for Journals / Manuscript with Paid Access
Authors who publish with this journal agree to the following terms:
- Publisher retain copyright .
- Authors are permitted and encouraged to post links to their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work .