Ab Initio and Density Functional Predictions of Solvation Free Energies of Cyclic Polyethers (CH2CH2O)n (n=2,6) in Aqueous and Tetrachloromethane Solutions

Authors

  • B. Ariche Taher Moulay University, University of Oran
  • A. Rahmouni Taher Moulay University
  • H. Brahim Taher Moulay University
  • A. Guendouzi Taher Moulay University
  • K. Alali Taher Moulay University

DOI:

https://doi.org/10.6000/1929-5030.2013.02.04.2

Keywords:

Continuum model, Solvation free energy, Cyclic polyether, Water, Tetrachloromethane

Abstract

Solvation free energies ΔGsoltot of cyclic polyethers (CH2CH2O)n (n=2,6) in aqueous and tetrachloromethane solutions have been calculated at HF, MP2 and B3LYP/6-311G (d,p) levels of theory using CPCM, IEFPCM and SMD implicit solvation models. It has been found that ΔGsoltot are negative for both solvents, they increase linearly with system sizes and they are more important in water solution. The electrostatic contributions to the solvation free energies ΔGsolele are also more important in water because of their polar nature. In water, CPCM and IEFPCM models give a close values, which are slightly different from SMD values. In tetrachloromethane solvent CPCM model seems overestimate ΔGsolele. For both solvents the non-electrostatic contributions to the solvation free energies ΔGsoln-ele provided by SMD are remarkably different to those given by CPCM and IEFPCM models.

Author Biographies

B. Ariche, Taher Moulay University, University of Oran

Modeling and Calculation Methods Laboratory, Department of Chemistry

A. Rahmouni, Taher Moulay University

Modeling and Calculation Methods Laboratory

H. Brahim, Taher Moulay University

Modeling and Calculation Methods Laboratory

A. Guendouzi, Taher Moulay University

Modeling and Calculation Methods Laboratory

K. Alali, Taher Moulay University

Modeling and Calculation Methods Laboratory

References


[1] Ranghino G, Romano S, Lehn JM, Wipff G. Monte Carlo study of the conformation-dependent hydration of the 18- crown-6 macrocycle. J Am Chem Soc 1985; 107: 7873-77. http://dx.doi.org/10.1021/ja00312a012
[2] Matisz G, Kelterer AM, Fabian WMF, Kunsági-Máté S. Application of the Quantum Cluster Equilibrium (QCE) Model for the Liquid Phase of Primary Alcohols Using B3LYP and B3LYP-D DFT Methods. J Phys Chem B 2011; 115: 3936- 41. http://dx.doi.org/10.1021/jp109950h
[3] Ohtsu K, Ozutsumi K. Thermodynamics of Solvation of 18- Crown-6 and Its Alkali-Metal Complexes in Various Solvents. J Incl Phenom Macrocycl Chem 2003; 45: 217-24. http://dx.doi.org/10.1023/A:1024511909345
[4] Pelc HW, Hempelmann R, Prager M, Zeidler MD. Dynamics of 18-Crown-6 Ether in Aqueous Solution Studied by Quasielastic Neutron Scattering. J Phys Chem 1991; 95: 592-98.
[5] Barannikov VP, Guseinov SS, V’yugin AI. Thermal dissociation of supramolecular complexes on the basis of 18- crown-6 and amino acids. Zh Fiz Khim 2004; 78: 1213-17.
[6] Tomasi J, Persico M. Molecular Interactions in Solution: An Overview of Methods Based on Continuous Distributions of the Solvent. Chem Rev 1994; 94: 2027-94. http://dx.doi.org/10.1021/cr00031a013
[7] Miertus S, Scrocco E, Tomasi J. Electrostatic interaction of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects. Chem Phys 1981; 55: 117-29. http://dx.doi.org/10.1016/0301-0104(81)85090-2
[8] Cancès E, Mennucci B. New applications of integral equation methods for solvation continuum models: ionic solutions and liquid crystals. J Math Chem 1998; 23: 309-26. http://dx.doi.org/10.1023/A:1019133611148
[9] Mennucci B, Cancès E, Tomasi J. Evaluation of solvent effects in isotropic and anisotropic dielectrics, and in ionic solutions with a unified integral equation method: theoretical bases, computational implementation and numerical applications. J Phys Chem 1997; 107: 3032-41. http://dx.doi.org/10.1063/1.473558
[10] Cancès E, Mennucci B, Tomasi J. A new integral equation formalism for the polarizable continuum model: theoretical background and applications to isotropic and anisotropic dielectrics. J Chem Phys 1997; 101: 10506-7.
[11] Mennucci B, Tomasi J. Continuum solvation models: A new approach to the problem of solute’s charge distribution and cavity boundaries. J Chem Phys 1997; 106: 5151-59.
[12] Cossi M, Mennucci B, Pitarch J, Tomasi J. Correction of cavity-induced errors in polarization charges of continuum solvation models. J Comp Chem 1998; 19: 833-46. http://dx.doi.org/10.1002/(SICI)1096- 987X(199806)19:8<833::AID-JCC3>3.0.CO;2-Q
[13] Barone V, Cossi M. Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model. J Phys Chem A 1998; 102: 1995-2001. http://dx.doi.org/10.1021/jp9716997
[14] Klamt A, Schuurmann G. COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J Chem Soc Perkin Trans 1993; 2: 799-805.
[15] Andzelm J, Kolmel C, Klamt A. Incorporation of solvent effects into density functional calculations of molecular energies and geometries. J Chem Phys 1995; 103: 9312-21. http://dx.doi.org/10.1063/1.469990
[16] Cossi M, Rega N, Scalmani G, Barone V. Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J Comput Chem 2003; 24: 669-81. http://dx.doi.org/10.1002/jcc.10189
[17] Choi CM, Heo J, Kim NJ. Binding selectivity of dibenzo-18- crown-6 for alkali metal cations in aqueous solution: A density functional theory study using a continuum solvation model. Chem Cent J 2012; 6: 84-92. http://dx.doi.org/10.1186/1752-153X-6-84
[18] Marianski M, Dannenberg JJ. Aqueous Solvation of Polyalanine -Helices with Specific Water Molecules and with the CPCM and SM5.2 Aqueous Continuum Models Using Density Functional Theory. J Phys Chem B 2012; 116: 1437-45. http://dx.doi.org/10.1021/jp209177u
[19] Takano Y, Houk KN. Benchmarking the Conductor-like Polarizable Continuum Model (CPCM) for Aqueous Solvation Free Energies of Neutral and Ionic Organic Molecules. J Chem Theory Comput 2005; 1: 70-77. http://dx.doi.org/10.1021/ct049977a
[20] Marenich AV, Cramer CJ, Truhlar DG. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J Phys Chem B 2009; 113: 6378-96. http://dx.doi.org/10.1021/jp810292n
[21] Marenich AV, Cramer CJ, Truhlar DG. Performance of SM6, SM8, and SMD on the SAMPL1 Test Set for the Prediction of Small-Molecule Solvation Free Energies. J Phys Chem B 2009; 113: 4538-43. http://dx.doi.org/10.1021/jp809094y
[22] Marenich AV, Cramer CJ, Truhlar DG. Universal Solvation Model Based on the Generalized Born Approximation with Asymmetric Descreening. J Chem Theory Comput 2009; 5: 2447-64. http://dx.doi.org/10.1021/ct900312z
[23] Tomasi J, Mennucci B, Cammi R. Quantum mechanical continuum solvation models. Chem Rev 2005; 105: 2999-93. http://dx.doi.org/10.1021/cr9904009
[24] Pederson CJ. The Discovery of Crown Ethers. J Inclusion Phenom 1988; 6: 337-50. http://dx.doi.org/10.1007/BF00658980
[25] Pedersen CJ. Cyclic polyethers and their complexes with metal salts. J Amer Chem Soc 1967; 89: 7017-36. http://dx.doi.org/10.1021/ja01002a035
[26] Barannikov VP, Guseinov SS, V’ugin AI. Molecular complexes of crown ethers in crystals and solutions. Russ J Coord Chem 2002; 28: 153-62. http://dx.doi.org/10.1023/A:1014729400394
[27] Li Y, Huszthy P, Móczár I, Szemenyei B, Kunsági-Máté S. Solvent effect on the complex formation of a crown ether derivative with sodium and potassium ions. Thermodynamic background of selectivity. Chem Phys Lett 2013; 556: 94-97. http://dx.doi.org/10.1016/j.cplett.2012.11.056
[28] Pilbáth Z, Horváth V, Horvai G, Huszthy P. Enantiomeric discrimination of chiral crown ether ionophores containing phenazine subcyclic unit by ion-selective potentiometry. Periodica Politech Chem Eng 2010; 54: 3-8. http://dx.doi.org/10.3311/pp.ch.2010-1.01
[29] Childs ME, Weber WP. Copyrolysis of symtetramethoxydimethyldisilane and 2,5-dimethylfuran. J Org Chem 1976; 41: 1799-802. http://dx.doi.org/10.1021/jo00872a027
[30] Choi JK, Kim SH, Yoon J, Lee KH, Bartsch RA, Kim JS. A PCT-Based, Pyrene-Armed Calix
[4]crown Fluoroionophore. J Org Chem 2006; 71: 8011-15. http://dx.doi.org/10.1021/jo060981j
[31] Macqueen DB, Schanze KS. Cation Controlled Photophysics in a Re(I) Fluoroionophore. J Am Chem Soc 1991; 113: 6108-10. http://dx.doi.org/10.1021/ja00016a028
[32] Horváth V, Takács T, Horvai G, Huszthy P, Bradshaw JS, Izatt RM. Enantiomer-selectivity of ion-selective electrodes based on a chiral crown-ether ionophore. Anal Lett 1997; 30: 1591-609. http://dx.doi.org/10.1080/00032719708001680
[33] Yamauchi A, Hayashita T, Kato A, Nishizawa S, Watanabe M, Teramae N. Selective potassium ion recognition by benzo-15-crown-5 fluoroionophore/gamma-cyclodextrin complex sensors in water. Anal Chem 2000; 72: 5841-6. http://dx.doi.org/10.1021/ac000741i
[34] Chun S, Dzyuba SV, Bartsch RA. Influence of structural variations in room-temperature ionic liquids on the selectivity and efficiency of competitive alkali metal salt extraction by a crown ether. Anal Chem 2001; 73: 3737-41. http://dx.doi.org/10.1021/ac010061v
[35] Stott PE, Bradshaw JS, Parish WW. Modified crown ether catalysts. 3. Structural parameters affecting phase transfer catalysis by crown ethers and a comparison of the effectiveness of crown ethers to that of other phase transfer catalysts. J Am Chem Soc 1980; 102: 4810-15. http://dx.doi.org/10.1021/ja00534a040
[36] Kakiuchi T, Tsujioka N. Cyclic voltammetry of ion transfer across the polarized interface between the organic molten salt and the aqueous solution. Electrochem Commun 2003; 5: 253-56. http://dx.doi.org/10.1016/S1388-2481(03)00039-0
[37] Steed JW, Atwood JL. Supramolecular Chemistry. Moscow. Nauka 2005.
[38] Hiraoka M. Crown Ethers and Analogous Compounds. Moscow. Mir 1986.
[39] Pedro B, Albert B, Jennifer L, and Jennifer M. Apparent Molar Volumes and Adiabatic Compressibilities of Crown Ethers and Glymes in Aqueous Solutions at Various Temperatures. J Solution Chem 2000; 29: 651-65. http://dx.doi.org/10.1023/A:1005133508364
[40] Hans-Jürgen B, Radu-Cristian M, Eckhard S. Complex Formation of Crown Ethers and Cryptands with Alkali Metal and Ammonium Ions in Chloroform. J Solution Chem 2009; 38: 209-17. http://dx.doi.org/10.1007/s10953-008-9358-z
[41] Harald H, John AR, Thorvald SB. Cation-Crown Ether Complex Formation in Water. II. Alkali and Alkaline Earth Cations and 12-Crown-4, 15-Crown-5, and 18-Crown-6. J Solution Chem 1979; 8: 779-92. http://dx.doi.org/10.1007/BF00648577
[42] Wojciech Z, Oleg VK, Iwona KC. Excess Enthalpies and Apparent Molar Volumes of Aqueous Solutions of Crown Ethers and Cryptand(222) at 25°C. J Solution Chem 1993; 22: 963-73. http://dx.doi.org/10.1007/BF00647720
[43] Rajoshree B, Benjamin FTC, Aaron JR, Robert WS, Charles LBM, Crown ether complexes of tin(II) trifluoromethanesulfonate. J Organomet Chem 2010; 695: 1012-18. http://dx.doi.org/10.1016/j.jorganchem.2009.12.023
[44] Minjae L, Zhenbin N, Daniel VS, Carla S, Harry WG. 1,2- Bis
[N-(N’-alkylimidazolium)]ethane salts as new guests for crown ethers and cryptands. Tetrahedron 2010; 66: 7077-82. http://dx.doi.org/10.1016/j.tet.2010.07.010
[45] Hartree DR. The Wave Mechanics of an Atom with a NonCoulomb Central Field. Part I. Theory and Methods. Proc Camb Phil Soc 1928; 26: 89-110. http://dx.doi.org/10.1017/S0305004100011919
[46] Fock V. Geometrization of the Dirac theory of the electron. Z Phys 1929; 57: 261-77. http://dx.doi.org/10.1007/BF01339714
[47] Errol L. Computational Chemistry, Introduction to the Theory and Applications of Molecular and Quantum Mechanics. Kluwer Academic Publishers. New York 2004.
[48] Møller C, Plesset MS. Note on an Approximation Treatment for Many-Electron Systems. Phys Rev 1934; 46: 618-22. http://dx.doi.org/10.1103/PhysRev.46.618
[49] David CY. Computational Chemistry, A Practical Guide for Applying Techniques to Real-World Problems. A John Wiley & Sons Publication. New York 2001.
[50] Becke AD. A new mixing of Hartree–Fock and local density functional theories. J Chem Phys 1993; 98: 1372-77. http://dx.doi.org/10.1063/1.464304
[51] Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 1988; 37: 785-89. http://dx.doi.org/10.1103/PhysRevB.37.785
[52] Seminario JM, Politzer P. Modem Density Functional, A Tool for Chemistry Theory. Elsevier. Amsterdam 1995.
[53] Scalmani G, Frisch MJ. Continuous surface charge polarizable continuum models of solvation. I. General formalism. J Chem Phys 2010; 132: 114110-125. http://dx.doi.org/10.1063/1.3359469
[54] Pascual-Ahuir JL, Silla E, Tuñón I. GEPOL: An improved description of molecular surfaces. III. A new algorithm for the computation of a solvent-excluding surface. J Comp Chem 1994; 15: 1127-38. http://dx.doi.org/10.1002/jcc.540151009
[55] Gaussian 09, Revision A.1, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE ,Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski, J, Fox DJ. Gaussian, Inc., Wallingford CT, 2009.
[56] Ariche B, Rahmouni A, Yahya Cherif F. Theoretical study of structural and thermochemical proprieties of straight-chain polyethers CH3O(CH2CH2O)nCH3(n=1,4) in aqueous and carbon tetrachloride solutions. J Phys Chem News 2012; 65: 87-94.
[57] Lowdin PO. Correlation Problem in Many-Eleetron Quantum Mechanies: I. Review of Different Approaches and Discussion of Some Current Ideas. Adv Chem Phys 1959; 2: 207-22. http://dx.doi.org/10.1002/9780470143483.ch7
[58] Wilson S. Electron correlation in molecules. Oxford: Clarendon Press 1984.
[59] Wilson S. Electron correlation in atoms and molecules. New York: Plenum Press 1987.
[60] Velders GJM, Feil D. Comparison of the Hartree-Fock, Møller-Plesset, and Hartree-Fock-Slater method with respect to electrostatic properties of small molecules. Theor Chim Acta 1993; 86: 391-16. http://dx.doi.org/10.1007/BF01122431

Downloads

Published

2013-11-25

How to Cite

Ariche, B., Rahmouni, A., Brahim, H., Guendouzi, A., & Alali, K. (2013). Ab Initio and Density Functional Predictions of Solvation Free Energies of Cyclic Polyethers (CH2CH2O)n (n=2,6) in Aqueous and Tetrachloromethane Solutions. Journal of Applied Solution Chemistry and Modeling, 2(4), 216–224. https://doi.org/10.6000/1929-5030.2013.02.04.2

Issue

Section

General Articles