Structural Data, Linear and Nonlinear Optical Properties of Some Cyclic Phosphazenes: A Theoretical Investigation

Authors

  • D. Hadji Département de Chimie, Facultés des Sciences Exactes, Université de Sidi-Bel-Abbès
  • A. Rahmouni Département de Chimie, Facultés des Sciences, Université Docteur M. Tahar de Saïda

DOI:

https://doi.org/10.6000/1929-5030.2015.04.03.1

Keywords:

Mean polarizability, polarizability anisotropy, vibrational and electronic polarizability, vibrational and electronic first hyperpolarizability

Abstract

We report ab initio and DFT calculation of structural data, dipole moment, diagonal vibrational and electronic contributions to polarizability, vibrational and electronic contributions to first hyperpolarizability of some cyclic phosphazenes. The electronic structure of substituted cyclic phosphazenes has been investigated using Hartree-Fock and density functional theory. The vibrational and electronic contributions to polarizabilities and first hyperpolarizability of these molecules were calculated with HF method, and different DFT levels used the traditional B3LYP and PBE functional and the long-range corrected functional like Coulomb-attenuating method CAM-B3LYP, LC-BLYP and wB97XD used different basis sets. These cyclic phosphazenes adopts a planar structure. The study reveals that the cyclic phosphazenes derivatives have large vibrational contribution to static first hyperpolarizability values. The results obtained from this work will provide into the electronic properties of this important class of inorganic polymers.

References


[1] Liebig J. Nachtrag der Redaction. Ann Pharm 1834; 11: 129- 39. http://dx.doi.org/10.1002/jlac.18340110202
[2] Gladstone JH, Holmes JD. Onchlorophosphuret of nitrogen, and its products of decomposition. J Chem Soc 1864; 17: 225-37. http://dx.doi.org/10.1039/JS8641700225
[3] Stokes HN. Ueber Chlorphmphorstickstoff und zweiseiner homologen Verbindungen, Ber. Dtsch Chem Ges 1895; 28: 437. http://dx.doi.org/10.1002/cber.189502801106
[4] Lee SB, Song SC, Jin J, Sohn YS, Thermosensitive Cyclotriphosphazenes. J Am Chem Soc 2000; 122: 8315- 8316. http://dx.doi.org/10.1021/ja001542j
[5] Carriedo GA, Alonso FJG, Garcia JL, Carbajo RJ, Ortiz FL. Eur J Inorg Chem 1999; 6: 1015-1020. http://dx.doi.org/10.1002/(SICI)1521- 3765(19980807)4:83.0.CO;2-Q
[6] Lieu PJ, Magill JH, Alarie YC. J Fire and Flammability 1980; 11: 167.
[7] Olshavsky MA, Allcock HR. Polyphosphazenes with high refractive-indexes synthesis, characterization, and opticalproperties. Macromolecules 1995; 28: 6188-6197. http://dx.doi.org/10.1021/ma00122a028
[8] Allcock HR, Dembek AA, Kim C, Devine RLS, Shi Y, Steier WH, Spangler CW. Second-order nonlinear optical poly(organophosphazenes): synthesis and nonlinear optical characterization. Macromolecules 1991; 24: 1000-1010. http://dx.doi.org/10.1021/ma00005a006
[9] Allcock HR, Richard, Fitzpatrick J, Salvati L. Sulfonation of (aryloxy) and (arylamino)phosphazenes: small-molecule compounds, polymers, and surfaces. Chem Mater 1991; 3: 1120-1132. http://dx.doi.org/10.1021/cm00018a032
[10] Allcock HR, Kim C. Photochromic polyphosphazeneswith spiropyran units. Macromolecules 1991; 24: 2846-2851. http://dx.doi.org/10.1021/ma00010a032
[11] Bortolus P, Gleria M. J Inorg Organomet Polym 1994; 4: 1-236.
[12] Diaz C, Spodine E, Moreno Y, Carrasco E. A one step functionalization, coordination of N3P3Cl6. J Chil Chem Soc 2004; 49: 205-207. http://dx.doi.org/10.4067/S0717-97072004000300002
[13] Diaz C, Valenzuela ML, Spodine E, Moreno Y, Peña O. A cyclic and polymeric phosphazene as solid state template for the formation of RuO2 nanoparticles. J Cluster Science 2007; 18: 831-844. http://dx.doi.org/10.1007/s10876-007-0132-y
[14] Gates DP, McWilliams AR, Ziembinski R, Liable-Sands LM, Guzei IA, Glenn Yap PA, Rheingold AL, Manners I. Chemistry of Boratophosphazenes. Chem Eur J 1998; 4: 1489-1503. http://dx.doi.org/10.1002/(SICI)1521- 3765(19980807)4:83.0.CO;2-Q
[15] Hartree DR. The wave mechanics of an atom with a nonCoulomb central field. Part II. Some results and discussion. Proc Cambridge Phil Soc 1928; 24: 111-132.
[16] Fock V. Näherungsmethodezur Losung des quanten-mechanischen Mehrkörperprobleme. Z Phys 1930; 61: 126-148. http://dx.doi.org/10.1007/BF01340294
[17] Hohenberg P, Kohn W. Inhomogeneous Electron Gas. Phys Rev 1964; 136: B864. http://dx.doi.org/10.1103/PhysRev.136.B864
[18] Møller Ch, Plesset MS. Note on an Approximation Treatment for Many-Electron Systems. Phys Rev 1934; 46: 618. http://dx.doi.org/10.1103/PhysRev.46.618
[19] Kirtman B, Champagne B, Luis JM. Efficient treatment of the effect of vibrations on electrical, magnetic, and spectroscopic properties. J Comput Chem 2000; 21: 1572-1588 http://dx.doi.org/10.1002/1096- 987X(200012)21:163.0.CO;2-8
[20] Kurtz H, Stewart J, Dieter KM. Calculation of the nonlinear optical properties of molecules. J Comput Chem 1990; 11: 82-87. http://dx.doi.org/10.1002/jcc.540110110
[21] Dudis DS, Kurtz HA, Lipkowitz KB, Boyd DB. Reviews in Computational Chemistry, Wiley-VCH, Weinheim 1998; 12: 241-279. http://dx.doi.org/10.1002/9780470125892.ch5
[22] Pluta T, Kolaski M, Medved M, Budzák S. Chem Phys Lett 2012; 546: 24-29. http://dx.doi.org/10.1016/j.cplett.2012.07.032
[23] Sekino H, Maeda Y, Kamiya M, Hirao K. Polarizability and second hyperpolarizability evaluation of long molecules by the density functional theory with long-range correction. J Chem Phys 2007; 126: 014107. http://dx.doi.org/10.1063/1.2428291
[24] Jacquemin D, Perpete EA, Scalmani G, Frisch MJ, Kobayashi R, Adamo C. J Chem Phys 2007; 126: 144105- 144112. http://dx.doi.org/10.1063/1.2715573
[25] Kirtman B, Bonness S, Solis AR, Champagne B, Matsumoto H, Sekino H. Calculation of electric dipole (hyper)polarizabilities by long-range-correction scheme in density functional theory: A systematic assessment for polydiacetylene and polybutatriene oligomers. J Chem Phys 2008; 128: 114108. http://dx.doi.org/10.1063/1.2885051
[26] Song JW, Watson MA, Sekino H, Hirao K. Nonlinear optical property calculations of polyynes with long-range corrected hybrid exchange-correlation functionals. J Chem Phys 2008; 129: 024117. http://dx.doi.org/10.1063/1.2936830
[27] Limacher PA, Mikkelsen KV, Luthi HP. On the accurate calculation of polarizabilities and second hyperpolarizabilities of polyacetylene oligomer chains using the CAM-B3LYP density functional. J Chem Phys 2009; 130: 194114. http://dx.doi.org/10.1063/1.3139023
[28] Alparone A. Comparative study of CCSD(T) and DFT methods: Electronic (hyper)polarizabilities of glycine. Chem Phys Lett 2011; 514: 21. http://dx.doi.org/10.1016/j.cplett.2011.08.010
[29] Alparone A. Structural, energetic and response electric properties of cyclic selenium clusters: an ab initio and density functional theory study. Theor Chem Acc 2012; 131: 1239. http://dx.doi.org/10.1007/s00214-012-1239-2
[30] Loboda O, Zalesny R, Avramopoulos A, Luis JM, Kirtman B, Tagmatarchis N, Reis H, Papadopoulos MG. Linear and Nonlinear Optical Properties of
[60] Fullerene Derivatives. J Phys Chem A 2009; 113: 1159-1170. http://dx.doi.org/10.1021/jp808234x
[31] Bishop D, Norman P, Calculations of dynamic hyperpolarizabilities for small and medium sized molecules: Handbook of Advanced Electronic and Photonic Materials and Devices, Academic Press, San Diego.9. 2001.
[32] Medved M, Stachová M, Jacquemin D, André JM, Perpète EA, A generalized Romberg differentiation procedure for calculation of hyperpolarizabilities. J Mol Struct 2007; 847: 39-46. http://dx.doi.org/10.1016/j.theochem.2007.08.028
[33] Bottcher CJF. Theory of Electric Polarization, Elsevier, Amsterdam 1973. http://dx.doi.org/10.1016/0022-2860(74)80080-3
[34] Castiglioni C, Gussoni M, Del Zoppo M, Zerbi G. Relaxation contribution to hyperpolarizability. A semiclassical model. Solid State Comm 1992; 82: 13-17. http://dx.doi.org/10.1016/0038-1098(92)90397-R
[35] Gussoni M, Rui M, Zerbi G. Electronic and relaxation contribution to linear molecular polarizability. An analysis of the experimental values. J Mol Struct 1998; 447: 163-215. http://dx.doi.org/10.1016/S0022-2860(97)00292-5
[36] Bishop DM. Adv Chem Phys 1998; 104: 1-40.
[37] Bishop DM, Kirtman B. A perturbation method for calculating vibrational dynamic dipole polarizabilities and hyperpolarizabilities. J Chem Phy 1991; 95: 2646. http://dx.doi.org/10.1063/1.460917
[38] Kirtman B, Bishop DM. Compact formulas for vibrational dynamic dipole polarizabilities and hyperpolarizabilities. J Chem Phys 1992; 97: 5255. http://dx.doi.org/10.1063/1.463806
[39] Orr BJ, Ward JF. Perturbation theory of the non-linear optical polarization of an isolated system. Mol Phys 1971; 20: 513. http://dx.doi.org/10.1080/0026897710010047
[40] Bishop DM, Kirtman B, Champagne B. Differences between the exact sum-over-states and the canonical approximation for the calculation of static and dynamic hyperpolarizabilities. J Chem Phys 1997; 107: 5780. http://dx.doi.org/10.1063/1.474337
[41] Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian 09, Revision A.02, Gaussian, Inc, Wallingford, CT 2009.
[42] Dennington R, Keith T, Millam J. SemichemInc, Shawnee Mission KS, Gauss View, Version 5 2009.
[43] Yanai T, Tew DP, Handy NC. A new hybrid exchange– correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 2004; 39: 51-57. http://dx.doi.org/10.1016/j.cplett.2007.05.055
[44] Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev 1988; B37: 785. http://dx.doi.org/10.1103/PhysRevB.37.785
[45] Hohenberg P, Kohn W, Inhomogeneous Electron Gas, Phys. Rev 1964; 136: B864. http://dx.doi.org/10.1103/PhysRev.136.B864
[46] Becke AD, Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev 1988; A 38: 3098. http://dx.doi.org/10.1103/PhysRevA.38.3098
[47] Lee C, Yang RG. Parr, Phys Rev 1988; B 37: 785-789. http://dx.doi.org/10.1103/PhysRevB.37.785
[48] Perdew JP, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys Rev Lett 1996; 77: 3865. http://dx.doi.org/10.1103/PhysRevLett.77.3865
[49] Iikura H, Tsuneda T, Yanai T, Hirao K. Long-range correction scheme for generalized-gradient-approximation exchange functionals. J Chem Phys 2001; 115: 3540- 3544. http://dx.doi.org/10.1063/1.1383587
[50] Chai JD, Head-Gordon M. Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys Chem Chem Phys 2008; 10: 6615-20. http://dx.doi.org/10.1039/b810189b
[51] Sim F, Chin S, Dupuis M, Rice J. Electron correlation effects in hyperpolarizabilities of p-nitroaniline. J Phys Chem 1993; 97: 1158-1163. http://dx.doi.org/10.1021/j100108a010
[52] Pecul M, Pawowski F, Jørgensen P, Köhn A, Hättig C. Highorder correlation effects on dynamic hyperpolarizabilities and their geometric derivatives: a comparison with density functional results. J Chem Phys 2006; 124: 114101. http://dx.doi.org/10.1063/1.2173253
[53] Zalesny R, Bartkowiak W, Toman P, Leszczynski J. Computational insight into relations between electronic and vibrational polarizabilities within the two-state valence-bond charge-transfer model. J Chem Phys 2007; 337: 77-80. http://dx.doi.org/10.1016/j.chemphys.2007.06.031
[54] Zalesny R, Wójcik G, Mossakowska I, Bartkowiak W, Avramopoulos A, Papadopoulos MG. Static electronic and vibrational first hyperpolarizability of meta-dinitrobenzene as studied by quantum chemical calculations. J Mol Struct (Theochem) 2009; 901: 46-50. http://dx.doi.org/10.1016/j.theochem.2009.04.011
[55] Andrea A. Nonlinear optical properties of fluorobenzenes: A Time-Dependent Hartree–Fock study. Computational and Theoretical Chemistry 2013; 1013: 23-24. http://dx.doi.org/10.1016/j.comptc.2013.03.014
[56] Cruiskshank DWJ. Refinements of structures containing bonds between Si, P, S or Cl and O or N. I. NaPO3NH3. Acta Crystallogr 1964; 17: 671-672. http://dx.doi.org/10.1107/S0365110X64001633
[57] Sabzyan H, Kalantar Z. Ab initio RHF and density functional B3LYP and B3PW91 study of (NPF2)n;n=2,3,4 and (NPX2)3; X=H, Cl, Br cyclic phosphazenes. J Molecul Struct (Theochem) 2003; 663: 149-157. http://dx.doi.org/10.1016/j.theochem.2003.08.132
[58] Sun H. Molecular Structures and Conformations of Polyphosphazenes-A Study Based on Density Functional Calculations of Oligomers. J Am Chem Soc 1997; 119: 3611. http://dx.doi.org/10.1021/ja963077p
[59] Sun H, Ren P, Fried JR. The COMPASS force field: parameterization and validation for phosphazenes. Comp and Theor Polymer Sci 1998; 8: 229-246. http://dx.doi.org/10.1016/S1089-3156(98)00042-7
[60] Abdellatif ML, Maouche B, Belmiloud Y, Triaki N, Brahimi M. Theoretical Study of the Linear Short-Chain PhosphazeneNa Complexes. The Open Structural Biology Journal 2009; 3: 26-33. http://dx.doi.org/10.2174/1874199100903010026
[61] Trinquier G. Structure, stability, and bonding in cyclodiphosphazene andcyclotriphosphazene. J Am Chem Soc 1986; 108(4): 568-577. http://dx.doi.org/10.1021/ja00264a002
[62] Mora V, Castro EA. Semiempirical Study of the Molecular Structure of Cyclic (NPX2)nPhosphazenes (n = 2, 3, 4, 5 and X = H, F, Cl). Chem Pap 2002; 5: 250-255. Available from www.chempap.org/?id=7&paper=602
[63] Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP. Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model. J Am Chem Soc 1985; 107: 3902-3909. http://dx.doi.org/10.1021/ja00299a024
[64] Stewart JJP, Optimization of parameters for semiempirical methods I. Method. J Comp Chem 1989; 10: 209-220. http://dx.doi.org/10.1002/jcc.540100208
[65] Breza M, Biskupic S. Ab initio study of simple short-chain phosphazenes. J Mol Structure (Theochem) 1995; 332: 277- 281. http://dx.doi.org/10.1016/0166-1280(94)03940-M
[66] Schulz A, Thormählen M, Müller HC. From Substituted Cyclotriphosphazenes to Double-Stranded Phosphazene Chains-A Quantumchemical Study. Internet Electronic Journal of Molecular Design 2003; 2: 653-677. Available from http://biochempress.com/Files/iejmd_2003_2_0653.pdf
[67] Klapötke TM, Schulz A. Ab initio methods in Main Group Chemistry. Wiley: Chichester 1998.
[68] Torrent-Sucarrat M, Sola M, Duran M, Luis JM, Kirtman B. Basis set and electron correlation effects on ab initio electronic and vibrational nonlinear optical properties of conjugated organic molecules. J Chem Phys 2003; 118: 711- 718. http://dx.doi.org/10.1063/1.1521725
[69] Zale ny R, Papadopoulos M, Bartkowiak W, Kaczmarek A. On the electron correlation effects on electronic and vibrational hyperpolarizability of merocyanine dyes. J Chem Phys 2008; 129: 134310. http://dx.doi.org/10.1063/1.2985736
[70] Kanis DR, Ranter MA, Marks TJ. Design and construction of molecular assemblies with large second-order optical nonlinearities. Quantum chemical aspects. Chem Rev 1994; 94: 195-242. http://dx.doi.org/10.1021/cr00025a007
[71] Giglio E, Ricerca. Sci, Crystal structure of trimeric phosphonitrile chloride. Refinement of the molecular structure 1960; 30: 721.
[72] Bullen GJ. An improved determination of the crystal structure ofhexachloro-cyclotriphosphazene (phosphonitrilic chloride). J Chem Soc A 1971; 1450-1453. http://dx.doi.org/10.1039/J19710001450
[73] Giglio E, Pompa F, Ripamonti A. Molecular conformation of linear polyphosphonitrile chloride. J Polym Sci 1962; 59: 293- 300. http://dx.doi.org/10.1002/pol.1962.1205916807
[74] Giglio E, Puliti R. Crystal structure of trimeric phosphonitrilic bromide. Acta Cristallogr 1967; 22: 304-307. http://dx.doi.org/10.1107/S0365110X67000519
[75] Allcock HR. Phosphorus-Nitrogen Compounds Cyclic, Linear and High Polymeric Systems Academic Press. New York 1972.
[76] Daugill WM. Phosphonitrilic derivatives. Part X. The crystal structure of trimeric phosphonitrilic fluoride. J Chem Soc 1963; 3211-3217. http://dx.doi.org/10.1039/JR9630003211
[77] Zoer H, Wagner AJ. The crystal structure of compounds with (N-P)nrings. Acta Crystallogr B 1970; 26: 1812-1819. http://dx.doi.org/10.1107/S0567740870004946

Downloads

Published

2015-09-08

How to Cite

Hadji, D., & Rahmouni, A. (2015). Structural Data, Linear and Nonlinear Optical Properties of Some Cyclic Phosphazenes: A Theoretical Investigation. Journal of Applied Solution Chemistry and Modeling, 4(3), 132–142. https://doi.org/10.6000/1929-5030.2015.04.03.1

Issue

Section

General Articles