Bio-Oil Production from Cirsium yildizianum through Pyrolysis in a Fixed-Bed Reactor

Authors

  • Tevfik Aysu Yuzuncu Yil University
  • Aydin Sükrü Bengü Bingol University

DOI:

https://doi.org/10.6000/1929-5030.2014.03.03.1

Keywords:

Biomass, Pyrolysis, Bio-oil, Catalyst, Cirsium yildizianum.

Abstract

Pyrolysis of Cirsium yildizianum samples were carried out in a fixed-bed tubular reactor with (tincal, colemanite and ulexite) and without catalyst catalyst at three different temperatures (350, 450, 550 oC) with a constant heating rate of 50 oC/min. The yields of bio-char, bio-oil and gas produced along with the compositions of the resulting bio-oils were determined by elemental, Fourier transform infrared spectroscopy (FT-IR) and Gas chromatography/ mass spectrometry (GC–MS). The effects of pyrolysis parameters including temperature and catalyst on product yields were investigated. The results indicate that both temperature and catalyst had signficant effect on conversion of Cirsium yildizianum into solid, liquid and gas products. The highest liquid (bio-oil) yield of 40.62% including aqueous phase was obtained in the presence of colemanite (10%) as catalyst at 550 oC. 79 different compounds were identified by GC-MS in bio-oils obtained at 550 oC.

Author Biographies

Tevfik Aysu, Yuzuncu Yil University

Chemistry

Aydin Sükrü Bengü, Bingol University

Central Research Laboratory

References


[1] Meier D, Faix O. State of the art of applied fast pyrolysis of lignocellulosicmaterials – a review. Bioresource Technol 1999; 68: 71-7. http://dx.doi.org/10.1016/S0960-8524(98)00086-8
[2] Butler E, Devlin G, Meier D, McDonnell K. A review of recent labora-tory research and commercial developments in fast pyrolysis and upgrading. Renew Sustain Energy Rev 2011; 15: 4171-86. http://dx.doi.org/10.1016/j.rser.2011.07.035
[3] Patil PT, Armbruster U, Martin A. Hydrothermal liquefaction of wheat straw in hot compressed water and subcritical water–alcohol mixtures. J Supercrit Fluid 2014 (In Press)
[4] Xiu S, Shahbazi A. Bio-oil production and upgrading research: a review. Renew Sust Energ Rev 2012; 16: 4406- 14. http://dx.doi.org/10.1016/j.rser.2012.04.028
[5] Lin Y, Tanaka S. Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol Biot 2006; 69: 627-42. http://dx.doi.org/10.1007/s00253-005-0229-x
[6] Matsumura Y, Minowa T, Potic B, et al. Biomass gasification in near- and super-critical water: status and prospects. Biomass Bioenerg 2005; 29: 268-92. http://dx.doi.org/10.1016/j.biombioe.2005.04.006
[7] Toor SS, Rosendahl L, Rudolf A. Hydrothermal liquefaction of biomass: A review of subcritical water technologies. Energy 2011; 36: 2328-42. http://dx.doi.org/10.1016/j.energy.2011.03.013
[8] Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technol 2005; 96: 673-86. http://dx.doi.org/10.1016/j.biortech.2004.06.025
[9] Jourabchi SA, Gan S, Ng HK. Pyrolysis of Jatropha curcas pressed cake for bio-oil production in a fixed-bed system. Energy Convers Manage 2014; 78: 518-26. http://dx.doi.org/10.1016/j.enconman.2013.11.005
[10] Bridgwater AV. Fast Pyrolysis of Biomass: A Handbook, Volume 2, Aston University, Bio-energy Research Group, UK, 2002.
[11] Yaman S. Pyrolysis of biomass to produce fuels and chemical feedstocks. Energy Convers Manage 2004; 45: 651-71. http://dx.doi.org/10.1016/S0196-8904(03)00177-8
[12] Zhang Q, Chang J, Wang T, Xu Y. Review of biomass pyrolysis oil properties and upgrading research. Energy Convers Manage 2007; 48: 87-92. http://dx.doi.org/10.1016/j.enconman.2006.05.010
[13] Lu Q, Wenzhi L, Xifeng Z. Overview of fuel properties of biomass fast pyrolysis oils, Energy Convers Manage 2009; 50: 1376-83. http://dx.doi.org/10.1016/j.enconman.2009.01.001
[14] Leiyu Z, Hongmin Y, Hao W, Meng W, Daqian C. Catalytic pyrolysis of rice husk by mixing with zinc oxide: Characterization of bio-oil and its rheological behaviour, Fuel Process Technol 2013; 106: 385-91. http://dx.doi.org/10.1016/j.fuproc.2012.09.003
[15] Tekin K, Akal?n MK, Bekta S, Karagöz S. Hydrothermal wood processing using borax decahydrateand sodium borohydride. J Anal Appl Pyrol 2013; 104: 68-72. http://dx.doi.org/10.1016/j.jaap.2013.09.008
[16] Shadangi KP, Mohanty K. Thermal and catalytic pyrolysis of Karanja seed to produce liquid fuel. Fuel 2014; 115: 434-42. http://dx.doi.org/10.1016/j.fuel.2013.07.053
[17] Kadereit JW, Jeffrey C. (eds.). Flowering plants. Eudicots: Asterales. — In: Kubitzki, K. (ed.), The families and genera of vascular plants, vol. 8: 132. Springer- Verlag, Berlin– Heidelberg, 2007.
[18] Arabac? T, Dirmenci T. Cirsium yildizianum (Asteraceae: Cynareae), a new species from East Anatolia, Turkey. Ann Bot Fenn 2011; 48: 503-6. http://dx.doi.org/10.5735/085.048.0610
[19] Aysu T. Supercritical fluid extraction of reed canary grass (Phalaris arundinacea). Biomass Bioenerg 2012; 41: 139-44. http://dx.doi.org/10.1016/j.biombioe.2012.02.024
[20] Aysu T, Küçük MM. Biomass pyrolysis in a fixed-bed reactor: Effects of pyrolysis parameters on product yields and characterization of products. Energy 2014; 64: 1002-25. http://dx.doi.org/10.1016/j.energy.2013.11.053
[21] Aysu T. Catalytic pyrolysis of Eremurus spectabilis for bio-oil production in a fixed-bed reactor: Effects ofpyrolysis parameters on product yields and character. Fuel Process Technol (In Press)
[22] Tappi Test Methods. Tappi Press, Atlanta, Georgia, 1998.
[23] Wise LE, John EC. Wood chemistry. second ed., New York, Reinhold Publishing, 1952.
[24] Liu HM, Xie XA, Li MF, Sun RC. Hydrothermal liquefaction of cypress: Effects of reaction conditions on 5-lump distribution and composition. J Anal Appl Pyrol 2012; 94: 177-83. http://dx.doi.org/10.1016/j.jaap.2011.12.007
[25] Sun PQ, Heng MX, Sun SH, Chen JW. Analysis of liquid and solid products from liquefaction of paulownia in hot-compressed water. Energy Convers Manage 2011; 52: 924-33. http://dx.doi.org/10.1016/j.enconman.2010.08.020
[26] Durak H, Aysu T. Effects of catalysts and solvents on liquefaction of Onopordum heteracanthum for production of bio-oils. Bioresource Technol 2014; 166: 309-17. http://dx.doi.org/10.1016/j.biortech.2014.05.051
[27] García L, Salvador ML, Arauzo J, Bilbao R. Catalytic pyrolysis of biomass: influence of the catalyst pretreatment on gas yields. J Anal Appl Pyrol 2001; 58-59: 491-501. http://dx.doi.org/10.1016/S0165-2370(00)00114-5
[28] Antonakou E, Lappas A, Nilsen MH, Bouzga A, Stöcker M. Evaluation of various types of AL-MCM-41 materials as catalysts in biomass pyrolysis for the production of bio-fuels and chemicals. Fuel 2006; 85: 2202-12. http://dx.doi.org/10.1016/j.fuel.2006.03.021
[29] Chen G, Spliethoff H, Andries J, Fang, M. Catalytic application to biomass pyrolysis in a fixed bed reactor. Energy Sources 2003; 25: 223-8. http://dx.doi.org/10.1080/00908310390142271
[30] Maguyon MCC, Capareda SC. Evaluating the effects of temperature on pressurized pyrolysis of Nannochloropsis oculata based on products yields and characteristics. Energy Convers Manage 2013; 76: 764-73. http://dx.doi.org/10.1016/j.enconman.2013.08.033
[31] Aysu T. Production and Characterization of Bio-Chars and Bio-Oils Formed by Pyrolysis of Persian Hogweed (Heracleum persicum Desf.) in A Fixed-Bed Reactor, Journal of Applied Solution Chemistry and Modeling 2013; 2(4): 205-15.
[32] Azargohar R, Nanda S, Kozinski JA, Dalai AK, Sutarto R. Effects of temperature on the physicochemical characteristics of fast pyrolysis bio-chars derived from Canadian waste biomass. Fuel 2014; 125: 90-100.
[33] Peters JF, Petrakopoulou F, Dufour J. Exergetic analysis of a fast pyrolysis process for bio-oil production. Fuel Process Technol 2014; 119: 245-55. http://dx.doi.org/10.1016/j.fuproc.2013.11.007
[34] Demiral I, Kul SC. Pyrolysis of apricot kernel shell in a fixedbed reactor: Characterization of bio-oil and char. J Anal Appl Pyrol 2014; 107: 17-24. http://dx.doi.org/10.1016/j.jaap.2014.01.019
[35] Shadangi KP, Mohanty K. Production and characterization of pyrolytic oil by catalytic pyrolysis of Niger seed. Fuel 2014: 26: 109-15. http://dx.doi.org/10.1016/j.fuel.2014.02.035
[36] Ate F, I ?kda MA. Influence of temperature and alumina catalyst on pyrolysis of corncob. Fuel 200; 88: 1991-7.
[37] Zhou L, Yang H, Wu H, Wang M, Cheng D. Catalytic pyrolysis of rice husk by mixing with zinc oxide: Characterization of bio-oil and its rheological behavior, Fuel Proces Technol 2013; 106: 385-91. http://dx.doi.org/10.1016/j.fuproc.2012.09.003
[38] Huber GW, Iborra S, Corma A. Synthesis of transportation fuels from biomass: chemistry, catalysts and engineering. Chem Rev 2006; 106: 4044-98. http://dx.doi.org/10.1021/cr068360d
[39] Williams PT, Chishti HM. Two stage pyrolysis of oil shale using a zeolite catalyst. J Anal Appl Pyrol 2000; 55: 217-34. http://dx.doi.org/10.1016/S0165-2370(00)00071-1
[40] Güllü D. Effect of catalyst on yield of liquid products from biomass via pyrolysis. Energ Source 2003; 25: 753-65. http://dx.doi.org/10.1080/00908310390207783
[41] Encinar JM, Beltrán FJ, Ramiro A, González JF. Pyrolysis/gasification of agricultural residues by carbon dioxide in the presence of different additives: influence of variable, Fuel Process Technol 1998; 55: 219-33. http://dx.doi.org/10.1016/S0378-3820(98)00052-6
[42] Wang Z, Wang F, Cao J, Wang J. Pyrolysis of pine wood in a slowly heating fixed-bed reactor: Potassium carbonate versus calcium hydroxide as a catalyst. Fuel Process Technol 2010; 91: 942-50. http://dx.doi.org/10.1016/j.fuproc.2009.09.015
[43] Jennings W, Shibamoto T. Qualitative Analysis of Flavor and Fragrance Volatiles by Glass Capillary Gas Chromatography. New York: Academic Press. 1980.
[44] Adams RP. Identification of Essential Oil Components by Gas Chromatograph Quadrupole Mass Spectroscopy. Allured Publishing Corporation, Carol Stream, USA. 2001.
[45] Moraes MSA, Georges F, Almeida SR, Damasceno FC, Maciel GPS, Zini CA, Jacques RA, Caramão EB. Analysis of products from pyrolysis of Brazilian sugar cane straw, Fuel Process Technol 2012; 101: 35-43. http://dx.doi.org/10.1016/j.fuproc.2012.03.004
[46] Tekin K, Karagöz S, Bekta S. Hydrothermal conversion of woody biomass with disodiumoctaborate tetrahydrate and boric acid. Ind Crop Prod 2013; 49: 334-40. http://dx.doi.org/10.1016/j.indcrop.2013.05.014
[47] Chen Y, Yang F, Wu L, Wang C, Yang Z. Co-deoxyliquefaction of biomass and vegetable oil to hydrocarbon oil: Influence of temperature, residence time, and catalyst, Bioresource Technol 2011; 102: 1933-41. http://dx.doi.org/10.1016/j.biortech.2010.08.038
[48] Parparita E, Brebu M, Uddin MA, Yanik J, Vasile C. Pyrolysis behaviors of various biomasses. Polymer Degradation and Stability 2014; 100: 1-9. http://dx.doi.org/10.1016/j.polymdegradstab.2014.01.005
[49] Peng C, Zhang G, Yue J, Xu G. Pyrolysis of lignin for phenols with alkaline additive, Fuel Process Technol 2014; 124: 212-21. http://dx.doi.org/10.1016/j.fuproc.2014.02.025
[50] Hill CAS. Wood modification chemical, thermal and other processes, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, 2007.
[51] Gomez-Serrano V, Piriz-Almeida F, Duran-Valle CJ, PastorVillegas J. Formation of oxygen structures by air activation. A study by FT-IR spectroscopy, Carbon 1999; 37: 1517-28. http://dx.doi.org/10.1016/S0008-6223(99)00025-1

Downloads

Published

2014-09-18

How to Cite

Aysu, T., & Bengü, A. S. . (2014). Bio-Oil Production from Cirsium yildizianum through Pyrolysis in a Fixed-Bed Reactor. Journal of Applied Solution Chemistry and Modeling, 3(3), 135–151. https://doi.org/10.6000/1929-5030.2014.03.03.1

Issue

Section

General Articles