Evaluation of In Vitro Capacitation of Buffalo Frozen/Thawed Sperm by Different Techniques
DOI:
https://doi.org/10.6000/1927-520X.2014.03.01.2Keywords:
Buffalo, Frozen semen, capacitation, Trypan blue/Giemsa, chlortetracyclineAbstract
This study aimed to determine the most reliable method to evaluate capacitation of buffalo frozen/thawed sperm. Frozen/thawed sperm cells were incubated in Tyrode albumin lactate pyruvate medium (TALP) in absence of capacitating agents (control) and in presence of 10 µg/ml heparin for 2 and 4 h. Capacitation was assessed by Trypan blue/Giemsa after lysophosphatidylcholine (LPC) exposure, chlortetracycline (CTC) fluorescence assay and immune-localization of tyrosine phosphorylated protein. Furthermore, we evaluated the effect of heparin on penetration, cleavage rates and kinetics of embryo development after heterologous IVF. The percentage of LPC-induced acrosome reacted (AR)-sperm increased (P<0.05) with heparin compared to the control after 2 h (28.2 vs 24.4%, respectively) and 4 h (35.1 vs 32.0 %, respectively). No differences in CTC pattern B (capacitated sperm) were found between groups and incubation times (on average 63%). On the contrary, heparin decreased (P<0.01) the percentage of tyrosine phosphorylation pattern A after 2 and 4 h (34.3 and 35.3%, respectively) compared to the control (54.5 and 51.8%, respectively) and increased (P<0.01) that of pattern EA after 2 and 4 h (59.2 and 54.2 %, respectively) compared to the control group (44.7 and 45.2 %, respectively). Both cleavage and penetration rates, as well as the percentage of fast developing embryos, were higher (P<0.01) in the heparin-treated group (77.2, 80.4 and 74.0 %, respectively) compared to the control (56.6, 58.0 and 55.2 %, respectively). In conclusion, Trypan blue/Giemsa staining to evaluate LPC-induced AR and tyrosine protein phosphorylation assay can be successfully used to evaluate capacitation of buffalo frozen/thawed semen.
References
Drost M. Advanced reproductive technology in the water buffalo. Theriogenology 2007; 68: 450-3. http://dx.doi.org/10.1016/j.theriogenology.2007.04.013 DOI: https://doi.org/10.1016/j.theriogenology.2007.04.013
Abd-Allah SM, Sharma RK, Phulia SK, Singh I. Superovulatory Response Following Transvaginal Follicle Ablation in Murrah Buffalo: Effect of FSH or PMSG+FSH Theriogenology Insight, 2013; 3(2): 77- 84. DOI: https://doi.org/10.5958/j.2277-3371.3.2.005
Abd-Allah SM. Laboratory production of buffalo embryos, 1ST Ed., LAP-Publishing House, Germany 2011; pp: 217.
Gasparrini B, Boccia L, Marchandise J, Di Palo R, George F, Donnay I, et al. Enrichment of in vitro maturation medium for buffalo (Bubalus bubalis) oocytes with thiol compounds: effects of cystine on glutathione synthesis and embryo development. Theriogenology 2006; 65(2): 275-87. http://dx.doi.org/10.1016/j.theriogenology.2005.05.036 DOI: https://doi.org/10.1016/j.theriogenology.2005.05.036
Gasparrini B. In vitro embryo production in buffalo: current situation and future perspectives. Ital J Anim Sci 2007; 6(2): 92-101. DOI: https://doi.org/10.4081/ijas.2007.s2.92
Parrish JJ, Susko-Parrish J, Winer MA, First NL. Capacitation of bovine sperm by heparin. Biol Reprod 1988; 38: 1171-80. http://dx.doi.org/10.1095/biolreprod38.5.1171 DOI: https://doi.org/10.1095/biolreprod38.5.1171
Farlin ME, Jasko DJ, Graham JK, Squires EL. Heparin-induced capacitation: a comparison between the bull and stallion. Equ Vet J 1993; 25(15): 49-52. DOI: https://doi.org/10.1111/j.2042-3306.1993.tb04825.x
Cormier N, Bailey JL. A Differential Mechanism Is Involved During Heparin- and Cryopreservation-Induced Capacitation of Bovine Spermatozoa. Biol Reprod 2003; 69: 177-85. http://dx.doi.org/10.1095/biolreprod.102.011056 DOI: https://doi.org/10.1095/biolreprod.102.011056
Dapino DG, Marini PE, Cabada MO. Effect of heparin on in vitro capacitation of boar sperm. Biol Res 2006; 39: 631-9. http://dx.doi.org/10.4067/S0716-97602006000500006 DOI: https://doi.org/10.4067/S0716-97602006000500006
Bergqvist AS, Ballester J, Johannisson A, Lundeheim N, Rodríguez- Martínez H. Heparin and dermatan sulphate induced capacitation of frozen-thawed bull spermatozoa measured by merocyanine-540. Zygote 2007; 15(3): 225-32. http://dx.doi.org/10.1017/S0967199407004182 DOI: https://doi.org/10.1017/S0967199407004182
Roy SC. Atreja SK. Tyrosine phosphorylation of a 38-kDa capacitation-associated buffalo (Bubalus bubalis) sperm protein is induced by L-arginine and regulated through a cAMP/PKA-independent pathway. Int J Androl 2008; 31(1): 12-24 DOI: https://doi.org/10.1111/j.1365-2605.2007.00745.x
Galantino-Homer HL, Visconti PE, Kopf GS. Regulation of protein tyrosine phosphorylation during bovine sperm capacitation by a cyclic adenosine 3959-monophosphate-dependent pathway. Biol Reprod 1997; 56: 707-19. http://dx.doi.org/10.1095/biolreprod56.3.707 DOI: https://doi.org/10.1095/biolreprod56.3.707
Visconti PE, Galantino-Homer H, Moore GD, Bailey JL, Ning X, Fornes M, et al. The molecular basis of sperm capacitation. J Androl 1998; 19: 242-8. DOI: https://doi.org/10.1002/j.1939-4640.1998.tb01994.x
Miller DJ, Winer MA, Ax RL. Heparin-binding proteins from seminal plasma bind to bovine spermatozoa and modulate capacitation by heparin. Biol Reprod 1990; 42: 899-915. http://dx.doi.org/10.1095/biolreprod42.6.899 DOI: https://doi.org/10.1095/biolreprod42.6.899
Therien I, Bleau G, Manjunath P. Phosphatidylcholine-binding proteins of bovine seminal plasma modulate capacitation of spermatozoa by heparin. Biol Reprod 1995; 52: 1372-9. http://dx.doi.org/10.1095/biolreprod52.6.1372 DOI: https://doi.org/10.1095/biolreprod52.6.1372
Langlais J, Roberts KD. A molecular membrane model of sperm capacitation and acrosome reaction of mammalian spermatozoa. Gam Res 1985; 12: 183-224. http://dx.doi.org/10.1002/mrd.1120120209 DOI: https://doi.org/10.1002/mrd.1120120209
Parrish JJ, Susko-Parrish JL, First NL. Capacitation of bovine sperm by heparin: inhibitory effect of glucose and role of intracellular pH. Biol Reprod 1989; 41: 683-99. http://dx.doi.org/10.1095/biolreprod41.4.683 DOI: https://doi.org/10.1095/biolreprod41.4.683
Vredenburgh-Wilberg WL, Parrish JJ. Intracellular pH of bovine sperm increases during capacitation. Mol Reprod Dev 1995; 40: 490-502. http://dx.doi.org/10.1002/mrd.1080400413 DOI: https://doi.org/10.1002/mrd.1080400413
Baldi E, Luconi M, Bonaccorsi L, Muratori M, Forti G. Intracellular events and signaling pathways involved in sperm acquisition of fertilizing capacity and acrosome reaction. Front Biosci 2000; 5: 110-23. http://dx.doi.org/10.2741/baldi DOI: https://doi.org/10.2741/A572
Iborra A, Companyó M, Martínez P, Morros A. Cholesterol Efflux Promotes Acrosome Reaction in Goat Spermatozoa. Biol Reprod 2000; 62: 378-83. http://dx.doi.org/10.1095/biolreprod62.2.378 DOI: https://doi.org/10.1095/biolreprod62.2.378
Jagan Mohanarao G, Atreja SK. Identification of NO induced and capacitation associated tyrosine phosphoproteins in buffalo (Bubalus bubalis) spermatozoa. Res Vet Sci 2012; 93: 618-23. http://dx.doi.org/10.1016/j.rvsc.2011.09.017 DOI: https://doi.org/10.1016/j.rvsc.2011.09.017
Visconti PE, Bailey JL, Moore GD, Pan D, Olds-Clarke P, Kopf GS. Capacitation of mouse spermatozoa: I. Correlation between the capacitation state and protein tyrosine phosphorylation. Dev 1995; 121: 1129-37. DOI: https://doi.org/10.1242/dev.121.4.1129
Urner F, Leppens-Luisier G, Sakkas D. Protein tyrosine phosphorylation in sperm during gamete interaction in the mouse: the influence of glucose. Biol Reprod 2001; 64: 1350-57. http://dx.doi.org/10.1095/biolreprod64.5.1350 DOI: https://doi.org/10.1095/biolreprod64.5.1350
Sakkas D, Luisier GL, Lucas H, Chardonnes D, Campana A, Franken DR, et al. Localization of tyrosine phosphorylated proteins in Human sperm and Relation to capacitation and Zona pellucida Binding. Biol Reprod 2003; 68: 1463-69. http://dx.doi.org/10.1095/biolreprod.102.011023 DOI: https://doi.org/10.1095/biolreprod.102.011023
Leclerc P, de Lamirande E, Gagnon C. Cyclic adenosine 3', 5' monophosphate-dependent regulation of protein tyrosine phosphorylation in relation to human sperm capacitation and motility. Biol Reprod 1996; 55: 684-92. http://dx.doi.org/10.1095/biolreprod55.3.684 DOI: https://doi.org/10.1095/biolreprod55.3.684
Roy SC, Atreja SK. Capacitation-associated protein tyrosine phosphorylation starts early in buffalo (Bubalus bubalis) spermatozoa as compared to cattle. Anim Reprod Sci 2009; 110(3); 319-25. http://dx.doi.org/10.1016/j.anireprosci.2008.01.021 DOI: https://doi.org/10.1016/j.anireprosci.2008.01.021
Kadirvel G, Kathiravan P, Kumar S. Protein tyrosine phosphorylation and zona binding ability of in-vitro capacitated and cryopreserved buffalo spermatozoa. Theriogenology 2011; 75(9): 1630-39. http://dx.doi.org/10.1016/j.theriogenology.2011.01.003 DOI: https://doi.org/10.1016/j.theriogenology.2011.01.003
Vijayaraghavan S, Trautman KD, Goueli SA, Carr DW. A tyrosine-phosphorylated 55-kilodaltion motility associated bovine sperm protein is regulated by cyclic adenosine 3,, 5,- monophosphates and calcium. Biol Reprod 1997; 56: 1450 -57. http://dx.doi.org/10.1095/biolreprod56.6.1450 DOI: https://doi.org/10.1095/biolreprod56.6.1450
Vishwanath R, Shannon P. Storage of bovine semen in liquid and frozen state. Anim Reprod Sci 2000; 62: 23-53. http://dx.doi.org/10.1016/S0378-4320(00)00153-6 DOI: https://doi.org/10.1016/S0378-4320(00)00153-6
Bailey JL, Bilodeau JF, Cormier N. Semen cryopreservation in domestic animals: a damaging and capacitating phenomenon. J Androl 2000; 21: 1-7. DOI: https://doi.org/10.1002/j.1939-4640.2000.tb03268.x
Watson PF, Plummer JM, Jones PS, Bredl JC. Localization of intracellular calcium during the acrosome reaction in ram spermatozoa. Mol Reprod Dev 1995; 41: 513-20. http://dx.doi.org/10.1002/mrd.1080410414 DOI: https://doi.org/10.1002/mrd.1080410414
Maxwell WM, Johnson LA. Chlortetracycline analysis of boar spermatozoa after incubation, flow cytometric sorting, cooling, or cryopreservation. Mol Reprod Dev 1997; 46: 408-18. http://dx.doi.org/10.1002/(SICI)1098-2795(199703)46:3<408::AID-MRD21>3.0.CO;2-T DOI: https://doi.org/10.1002/(SICI)1098-2795(199703)46:3<408::AID-MRD21>3.0.CO;2-T
Fuller SJ, Whittingham DG. Effect of cooling mouse spermatozoa to 4 degrees C on fertilization and embryonic development. J Reprod Fertil 1996; 108: 139-45. http://dx.doi.org/10.1530/jrf.0.1080139 DOI: https://doi.org/10.1530/jrf.0.1080139
Fraser LR, Abeydeera LR, Niwa K. Ca2+-regulating mechanisms that modulate bull sperm capacitation and acrosomal exocytosis as determined by chlortetracycline analysis. Mol Reprod Dev 1995; 40: 233-41. http://dx.doi.org/10.1002/mrd.1080400213 DOI: https://doi.org/10.1002/mrd.1080400213
Vadnais ML, Roy N, Kirkwood RN, Specher DJ, Chou K. Effects of extender, incubation temperature and added seminal plasma on capacitation of cryopreserved, thawed boar sperm as determined by chlortetracycline staining. Anim Reprod Sci 2005; 90: 347-54. http://dx.doi.org/10.1016/j.anireprosci.2005.02.007 DOI: https://doi.org/10.1016/j.anireprosci.2005.02.007
Albrizio M, Guaricci AC, Maritato F, Sciorsci RL, Mari G, Calamita G, et al. Expression and Subcellular localization of the µ-opioid receptor in equine spermatozoa: evidence for its functional role. Reprod 2005; 129: 39-49. http://dx.doi.org/10.1530/rep.1.00284 DOI: https://doi.org/10.1530/rep.1.00284
Miah AG, Salma U, Sinha PB, Hölker M, Tesfaye D, Cinar MU, et al. Intracellular signaling cascades induced by relaxin in the stimulation of capacitation and acrosome reaction in fresh and frozen-thawed bovine spermatozoa. Anim Reprod Sci 2011; 125: 31-40. http://dx.doi.org/10.1016/j.anireprosci.2011.03.010 DOI: https://doi.org/10.1016/j.anireprosci.2011.03.010
Kaul G, Sharma GS, Singh B, Gandhi KK. Capacitation and acrosome reaction in buffalo bull spermatozoa assessed by chlortetracycline and pisum sativum agglutinin fluorescence assay. Theriogenology 2001; 55: 1457- 68. http://dx.doi.org/10.1016/S0093-691X(01)00494-0 DOI: https://doi.org/10.1016/S0093-691X(01)00494-0
Tardif S, Dube C, Chevalier S, Bailey JL. Capacitation is associated with tyrosine phosphorylation and tyrosine kinase-like activity of pig sperm proteins. Biol Reprod 2001; 6: 784-92. http://dx.doi.org/10.1095/biolreprod65.3.784 DOI: https://doi.org/10.1095/biolreprod65.3.784
Watson PF. The causes of reduced fertility with cryopreserved semen. Anim Reprod Sci 2000; 60/61: 481-92. http://dx.doi.org/10.1016/S0378-4320(00)00099-3 DOI: https://doi.org/10.1016/S0378-4320(00)00099-3
Kovacs A, Foote RH. Viability and acrosome staining of bull, boar and rabbit spermatozoa. Biotech Histochem 1992; 67: 119-24. http://dx.doi.org/10.3109/10520299209110020 DOI: https://doi.org/10.3109/10520299209110020
Boccia L, Di Palo R, De Rosa A, Attanasio L, Mariotti E, Gasparrini B. Evaluation of buffalo semen by Trypan blue/Giemsa staining and related fertility in vitro. Ital J Anim Sci 2007: 6(2): 739-42. DOI: https://doi.org/10.4081/ijas.2007.s2.739
Boccia L, Di Francesco S, Neglia G, De Blasi M, Longobardi V, Campanile G, et al. Osteopontin improves sperm capacitation and in vitro fertilization efficiency in buffalo (Bubalus bubalis). Theriogenology 2013; 80: 212-17. http://dx.doi.org/10.1016/j.theriogenology.2013.04.017 DOI: https://doi.org/10.1016/j.theriogenology.2013.04.017
Choi YJ, Uhm SJ, Song SJ, Song H, Park JK, Kim T, et al. Cytochrome-c upregulation during capacitation and spontaneous acrosome reaction determines the fate of pig sperm cells: linking proteome analysis. J Reprod Dev 2008; 54: 68-83. http://dx.doi.org/10.1262/jrd.19116 DOI: https://doi.org/10.1262/jrd.19116
Green CE, Watson PF. Comparison of the capacitation-like state of cooled boar spermatozoa with true capacitation. Reprod 2001; 122: 889-98. http://dx.doi.org/10.1530/rep.0.1220889 DOI: https://doi.org/10.1530/rep.0.1220889
Thomas AD, Meyers SA, Ball BA. Capacitation-like changes in equine spermatozoa following cryopreservation. Theriogenology 2006; 65: 1531-50. http://dx.doi.org/10.1016/j.theriogenology.2005.08.022 DOI: https://doi.org/10.1016/j.theriogenology.2005.08.022
Pommer AC, Rutllant J, Meyers SA. Phosphorylation of protein tyrosine residues in fresh and cryo-preserved stallion spermatozoa under capacitating condition. Biol Reprod 2003; 68: 1208-14. http://dx.doi.org/10.1095/biolreprod.102.011106 DOI: https://doi.org/10.1095/biolreprod.102.011106
Gualtieri R, Boni R, Tosti E, Zagami M, Talevi R. Intracellular calcium and protein tyrosine phosphorylation during the release of bovine sperm adhering to the fallopian tube epithelium in vitro. Reprod 2005; 129: 51-60. http://dx.doi.org/10.1530/rep.1.00374 DOI: https://doi.org/10.1530/rep.1.00374
Lonergan P, Khatir H, Piumi F, Rieger D, Humblot P, Boland MP. Effect of time interval from insemination to first cleavage on the developmental characteristics, sex ratio and pregnancy rate after transfer of bovine embryos. J Reprod Fertil 1999; 117: 159-67. http://dx.doi.org/10.1530/jrf.0.1170159 DOI: https://doi.org/10.1530/jrf.0.1170159
Alomar M, Tasiaux H, Remacle S, George F, Paul D, Donnay I. Kinetics of fertilisation and development, and sex ratio of bovine embryos produced using the semen of different bulls. Theriogenology 2008; 107: 48-61. DOI: https://doi.org/10.1016/j.anireprosci.2007.06.009
Downloads
Published
How to Cite
Issue
Section
License
Policy for Journals/Articles with Open Access
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are permitted and encouraged to post links to their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work