Effect of Methyl-B-Cyclodextrin (MBCD) on In Vitro Capacitation of Buffalo Frozen/Thawed Sperm

Authors

  • A.R. Elkhawagah Theriogenology Department, Faculty of Veterinary Medicine, Benha University, Moshtohor – Toukh, PO Box 13736, Egypt
  • V. Longobardi 2Department of Veterinary Medicine and Animal Production, Federico II University, Via F. Delpino 1, 80137 Naples, Italy
  • B. Gasparrini 2Department of Veterinary Medicine and Animal Production, Federico II University, Via F. Delpino 1, 80137 Naples, Italy
  • G.A. Sosa Theriogenology Department, Faculty of Veterinary Medicine, Benha University, Moshtohor – Toukh, PO Box 13736, Egypt
  • A. Salzano 2Department of Veterinary Medicine and Animal Production, Federico II University, Via F. Delpino 1, 80137 Naples, Italy
  • M.E.A. Aboul-roos Theriogenology Department, Faculty of Veterinary Medicine, Benha University, Moshtohor – Toukh, PO Box 13736, Egypt
  • A.E. Abd El-Gaffar Theriogenology Department, Faculty of Veterinary Medicine, Benha University, Moshtohor – Toukh, PO Box 13736, Egypt
  • L. Zicarelli 2Department of Veterinary Medicine and Animal Production, Federico II University, Via F. Delpino 1, 80137 Naples, Italy

DOI:

https://doi.org/10.6000/1927-520X.2014.03.01.3

Keywords:

Buffalo, Frozen semen, Methyl-B-Cyclodextrin, capacitation

Abstract

The aim of this study was to determine the effect of Methyl-B-Cyclodextrin (MBCD) on capacitation of buffalo sperm. Frozen/thawed semen was incubated in the absence of capacitating agents (negative control), in the presence of 10 µg/ml heparin (positive control) and of 1, 2, 4 and 8 mg/ml MBCD for 2 and 4h. At each incubation time, sperm motility was evaluated by phase contrast microscopy. Capacitation was assessed by the sperm ability to undergo acrosome reaction after lysophosphatidylcholine treatment, evaluated with viability by Trypan blue-Giemsa. After 2 h capacitation increased (P<0.01) in MBCD groups (39.2±1.4, 44.5±3.3, 56.7±1.5 and 62.5±3.8, with 1, 2, 4 and 8 mg/ml MBCD, respectively) compared to the negative and positive controls (27.5±1.0 and 28.0±0.8, respectively). Likewise, after 4 h the percentage of live capacitated sperm was higher at increasing concentration of MBCD (31.0±0.7, 34.5±1.7, 42.0±1.9, 49.2±2.8, 62.3±1.5 and 70.8±1.7 in negative control, positive control and with 1, 2, 4 and 8 mg/ml MBCD, respectively; P<0.01). After 2 h sperm motility was lower (P<0.01) in 4 and 8 mg/ml MBCD groups (43.3±2.1 and 25.0±3.2, respectively) than in negative control, positive control, 1 and 2 mg/ml MBCD groups (55.0±1.8, 48.3±2.8, 61.7±2.8, 56.7±1.1, respectively). After 4 h the lowest sperm motility was observed with higher MBCD concentrations (40.0±0.0, 46.7±4.2, 51.7±4.6, 50.0±0.0, 40.0±3.7 and 6.7±1.1, in negative control, positive control, 1, 2, 4 and 8 mg/ml MBCD, respectively; P<0.01). In conclusion, MBCD improved sperm capacitation in a dose-dependent manner while decreasing the sperm motility at higher concentrations

Author Biographies

A.R. Elkhawagah, Theriogenology Department, Faculty of Veterinary Medicine, Benha University, Moshtohor – Toukh, PO Box 13736, Egypt

Theriogenology Department, Faculty of Veterinary Medicine

V. Longobardi, 2Department of Veterinary Medicine and Animal Production, Federico II University, Via F. Delpino 1, 80137 Naples, Italy

Department of Veterinary Medicine and Animal Production

B. Gasparrini, 2Department of Veterinary Medicine and Animal Production, Federico II University, Via F. Delpino 1, 80137 Naples, Italy

Department of Veterinary Medicine and Animal Production

G.A. Sosa, Theriogenology Department, Faculty of Veterinary Medicine, Benha University, Moshtohor – Toukh, PO Box 13736, Egypt

Theriogenology Department, Faculty of Veterinary Medicine

A. Salzano, 2Department of Veterinary Medicine and Animal Production, Federico II University, Via F. Delpino 1, 80137 Naples, Italy

Department of Veterinary Medicine and Animal Production

M.E.A. Aboul-roos, Theriogenology Department, Faculty of Veterinary Medicine, Benha University, Moshtohor – Toukh, PO Box 13736, Egypt

Theriogenology Department, Faculty of Veterinary Medicine

A.E. Abd El-Gaffar, Theriogenology Department, Faculty of Veterinary Medicine, Benha University, Moshtohor – Toukh, PO Box 13736, Egypt

Theriogenology Department, Faculty of Veterinary Medicine

L. Zicarelli, 2Department of Veterinary Medicine and Animal Production, Federico II University, Via F. Delpino 1, 80137 Naples, Italy

Department of Veterinary Medicine and Animal Production

References

Gasparrini B. In vitro embryo production in buffalo: current situation and future perspectives. Ital J Anim Sci 2007; 6 (2): 92-101. DOI: https://doi.org/10.4081/ijas.2007.s2.92

Gasparrini B, Boccia L, Marchandise J, Di Palo R, George F, Donnay I, Zicarelli l. Enrichment of in vitro maturation medium for buffalo (Bubalusbubalis) oocytes with thiol compounds: effects of cystine on glutathione synthesis and embryo development. Theriogenology 2006; 65(2): 275-87. http://dx.doi.org/10.1016/j.theriogenology.2005.05.036 DOI: https://doi.org/10.1016/j.theriogenology.2005.05.036

Yanagimachi R. Gamete manipulation for development: new methods for conception. Reprod Fertil Dev 2001; 13: 3-14. http://dx.doi.org/10.1071/RD00047 DOI: https://doi.org/10.1071/RD00047

Kato Y, Shoei S, Nagao Y. Capacitation status of activated bovine sperm cultured in media containing methyl-β-cyclodextrin affects the acrosome reaction and fertility. Zygote 2010; 19: 21-30. http://dx.doi.org/10.1017/S0967199410000304 DOI: https://doi.org/10.1017/S0967199410000304

Baldi E, Luconi M, Bonaccorsi L, Muratori M, Forti G. Intracellular events and signaling pathways involved in sperm acquisition of fertilizing capacity and acrosome reaction. Front Biosci 2000; 5: 110-23. http://dx.doi.org/10.2741/baldi DOI: https://doi.org/10.2741/A572

Iborra A, Companyó M, Martínez P, Morros A. Cholesterol Efflux Promotes Acrosome Reaction in Goat Spermatozoa. Biol Reprod 2000; 62:378-83. http://dx.doi.org/10.1095/biolreprod62.2.378 DOI: https://doi.org/10.1095/biolreprod62.2.378

Ehrenwald E, Foote RH, Parks JE. Bovine oviductal fluid components and their potential role in sperm cholesterol. Mol Reprod Dev 1990; 25:195-204. http://dx.doi.org/10.1002/mrd.1080250213 DOI: https://doi.org/10.1002/mrd.1080250213

Shadan S, James PS, Howes EA, Jones R. Cholesterol efflux alters lipid raft stability and distribution during capacitation of boar sperm. Biol Reprod 2004; 71: 253-65. http://dx.doi.org/10.1095/biolreprod.103.026435 DOI: https://doi.org/10.1095/biolreprod.103.026435

Gadella BM, Tsai PS, Boerke A, Brewis IA. Sperm head membrane reorganisation during capacitation. The Internation. J Dev Biol 2008; 52: 473-80. http://dx.doi.org/10.1387/ijdb.082583bg DOI: https://doi.org/10.1387/ijdb.082583bg

Kilsdonk EPC, Yancey P, Stoudt G, Bangerter FW, Johnson WJ, Phillips MC, et al. Cellular cholesterol efflux mediated by cyclodextrins. J Biol Chem 1995; 270: 17250-56. http://dx.doi.org/10.1074/jbc.270.29.17250 DOI: https://doi.org/10.1074/jbc.270.29.17250

Yancey PG, Rodrigueza WV, Kilsdonk EPC, Stoud GW, Johnson WJ, Phillips MC, et al. Cellular cholesterol efflux mediated by cyclodextrins: demonstration of kinetic pools and mechanism of efflux. J Biol Chem 1996; 271: 16026-34. http://dx.doi.org/10.1074/jbc.271.27.16026 DOI: https://doi.org/10.1074/jbc.271.27.16026

Barenholz Y. Sphingomyelin and cholesterol: From membrane biophysics and rafts to potential medical applications. Subcell Biochem 2004; 37: 167-215. http://dx.doi.org/10.1007/978-1-4757-5806-1_5 DOI: https://doi.org/10.1007/978-1-4757-5806-1_5

Chiu PC, Chung MK, Tsang HY, Koistinen R, Koistinen H, Seppala M, Lee KF, and Yeung WS. Glycodelin-S in human seminal plasma reduces cholesterol efflux and inhibits capacitation of spermatozoa. J Biol Chem 2005; 280: 25580-89. http://dx.doi.org/10.1074/jbc.M504103200 DOI: https://doi.org/10.1074/jbc.M504103200

Zeng WX, Terada T. Effects of Methyl-Beta-Cyclodextrin on Cryosurvival of Boar Spermatozoa. J Androl 2001; 22 (1): 111-18. DOI: https://doi.org/10.1002/j.1939-4640.2001.tb02160.x

Ohtani Y, Irie T, Uekama K, Fukunaga K, Pitha J. Differential effects of α˜, β˜, and γ-cyclodextrins on human erythrocytes. Eur J Biochem 1989; 186: 17-22. http://dx.doi.org/10.1111/j.1432-1033.1989.tb15171.x DOI: https://doi.org/10.1111/j.1432-1033.1989.tb15171.x

Companyó M, Iborra A, Villaverde J, Martínez P, Morros A. Membrane fluidity changes in goat sperm induced by cholesterol depletion using beta-cyclodextrin. Biochim Biophys Acta 2007; 1768: 2246-55. http://dx.doi.org/10.1016/j.bbamem.2007.06.011 DOI: https://doi.org/10.1016/j.bbamem.2007.06.011

Choi YH, Toyoda Y. cyclodextrin remove cholesterol from mouse sperm and induces capacitation in a protein-free medium. Biol Reprod 1998; 59: 1328-33. http://dx.doi.org/10.1095/biolreprod59.6.1328 DOI: https://doi.org/10.1095/biolreprod59.6.1328

Visconti PE, Galantino-Homer H, Ning X, Moore GD, Valenzuela JP, Jorgez CJ, et al. Cholesterol Efflux-mediated Signal Transduction in Mammalian Sperm. J Biol Chem 1999; 274 (5): 3235-42. http://dx.doi.org/10.1074/jbc.274.5.3235 DOI: https://doi.org/10.1074/jbc.274.5.3235

Funahashi H. Effect of methyl-B-cyclodextrin and fertilization promoting peptide on capacitation of boar spermatozoa in a protein-free medium. J Reprod Dev 2002; 48(1): 57-63. http://dx.doi.org/10.1262/jrd.48.57 DOI: https://doi.org/10.1262/jrd.48.57

Dinkins MB, Brackett BG. Chlortetracycline staining patterns of frozen-thawed bull spermatozoa treated with β-cyclodextrins, dibutyrylcAMP and progesterone. Zygote 2000; 8: 245-56. http://dx.doi.org/10.1017/S0967199400001040 DOI: https://doi.org/10.1017/S0967199400001040

Nagao Y, Ohta Y, Murakami H, Kato Y. The effects of methyl-β-cyclodextrin on in-vitro fertilization and the subsequent development of bovine oocyte. Zygote 2010; 18(4): 323-30. http://dx.doi.org/10.1017/S0967199409990396 DOI: https://doi.org/10.1017/S0967199409990396

Cross NL. Effect of methyl-Beta-cyclodextrin on the acrosomal responsiveness of human sperm. Mol Reprod Dev1999; 53: 92-98. http://dx.doi.org/10.1002/(SICI)1098-2795(199905)53:1<92::AID-MRD11>3.0.CO;2-Q DOI: https://doi.org/10.1002/(SICI)1098-2795(199905)53:1<92::AID-MRD11>3.0.CO;2-Q

Vale WG. Sperm Cryopreservation. Third Course on Biotechnology of Reproduction In Buffaloes, Caserta, Italy. In: Bubalus bubalis. J. Buffalo Sci. and Tech 1997; suppl. 4: 129-140.

Parrish JJ, Susko-Parrish JL, First NL. Capacitation of bovine sperm by heparin. Biol Reprod 1988; 38: 1171-80. http://dx.doi.org/10.1095/biolreprod38.5.1171 DOI: https://doi.org/10.1095/biolreprod38.5.1171

Kovacs A, Foote R H. Viability and acrosome staining of bull, boar and rabbit spermatozoa. Biotech Histochem 1992; 67: 119-24. http://dx.doi.org/10.3109/10520299209110020 DOI: https://doi.org/10.3109/10520299209110020

Boccia L, Di Palo R, De Rosa A, Attanasio L, Mariotti E, Gasparrini B. Evaluation of buffalo semen by Trypan

blue/Giemsa staining and related fertility in vitro. Ital J Anim Sci 2007; 6 (suppl 2): 739-42. DOI: https://doi.org/10.4081/ijas.2007.s2.739

Boccia L, Di Francesco S, Neglia G, De Blasi M, Longobardi V, Campanile G, Gasparrini B. Osteopontin improves sperm capacitation and in vitro fertilization efficiency in buffalo (Bubalus bubalis). Theriogenology 2013; 80 (3): 212-7. http://dx.doi.org/10.1016/j.theriogenology.2013.04.017 DOI: https://doi.org/10.1016/j.theriogenology.2013.04.017

Moseley FLC, Jha KN, Björndahl L, Brewis IA, Publicover SJ, Barratt CLR, et al. Induction of human sperm capacitation varies between incubation media; an effect that is not associated with proteinkinase A activation. Mol Hum Reprod 2005; 11: 523-29. http://dx.doi.org/10.1093/molehr/gah188 DOI: https://doi.org/10.1093/molehr/gah188

Bailey J, Bilodeau J, Cormier N. Semen cryopreservation in domestic animals: a damaging and capacitating phenomenon. J. Androl 2000; 21: 1-7. DOI: https://doi.org/10.1002/j.1939-4640.2000.tb03268.x

Watson PF. The causes of reduce fertility with cryopreserved semen. Anim Reprod Sci 2000; 60: 481-92. http://dx.doi.org/10.1016/S0378-4320(00)00099-3 DOI: https://doi.org/10.1016/S0378-4320(00)00099-3

Takeo T, Hoshii T, Kondo T, Toyodome H, Arima H, Yamamura K, Irie T, Nakagata N. Methyl-beta-cyclodextrin improves fertilizing ability of C57BL/6 mouse sperm after freezing and thawing by facilitating cholesterol efflux from the cells. Biol Reprod 2008; 78(3): 546-51. http://dx.doi.org/10.1095/biolreprod.107.065359 DOI: https://doi.org/10.1095/biolreprod.107.065359

Takeo T, Nakagata N. Reduced Glutathione Enhances Fertility of Frozen/Thawed C57BL/6 Mouse Sperm after Exposure to Methyl-Beta-Cyclodextrin. Biol Reprod 2011; 85: 1066-72. http://dx.doi.org/10.1095/biolreprod.111.092536 DOI: https://doi.org/10.1095/biolreprod.111.092536

Van Gestel RA, Helms JB, Brouwers JF, Gadella BM. Effects of methyl-beta-cyclodextrin-mediated cholesterol depletion in porcine sperm compared to somatic cells. Mol Reprod Dev 2005; 72: 386-95. http://dx.doi.org/10.1002/mrd.20351 DOI: https://doi.org/10.1002/mrd.20351

Downloads

Published

2014-03-21

How to Cite

Elkhawagah, A., Longobardi, V., Gasparrini, B., Sosa, G., Salzano, A., Aboul-roos, M., El-Gaffar, A. A., & Zicarelli, L. (2014). Effect of Methyl-B-Cyclodextrin (MBCD) on In Vitro Capacitation of Buffalo Frozen/Thawed Sperm. Journal of Buffalo Science, 3(1), 12–17. https://doi.org/10.6000/1927-520X.2014.03.01.3

Issue

Section

Articles