Research Progress on the Injury Mechanism and the Protective Effect of Blood-Brain Barrier
DOI:
https://doi.org/10.6000/1927-3037.2015.04.02.1Keywords:
Matrix metalloproteinases, Aquaporin, Tight junction, Adhesion molecules, Cytokines.Abstract
The Blood-Brain Barrier (BBB) is important structure to maintaining the stabilization of central nervous system. It is composed of endothelial cell and tight junction, the basal lamina, astrocytic endfeet. BBB’s injuries is a important symbol when central nervous system generate lesion in cerebral ischemical reperfusion injury (CIRI), its’ the injury mechanism including that matrix metalloproteinases’ activity raise induce that basal lamina and extracellular matrix degradation, the augmentation of Aquaporin-4’s expression cause vasogenic edema, destruction of tight junction and decrease of related protein expression lead to raise of BBB permeability, the adhesion molecules and cytokines stimulate the inflammatory reaction, a lot of free radicals production and nitric oxide toxicity can pose the damage of endothelial cells and basal lamina. BBB’s protection mainly by reducing the change of BBB’s morphological structure; decreasing BBB’s permeability; reducing the harmful substances go into BBB; maintaining stabilize of central nervous system’s internal environment. Now the mechanism was constantly expounded that BBB’s injury, adjustment and repair, more and more medicines will be applied to the prevention and treatment of the BBB. In this paper, we will review about research progress on the injury mechanism of BBB and the protective effect of it.
References
Fan CH, Yeh CK. Microbubble-enhanced Focused Ultrasound-induced Blood–brain Barrier Opening for Local and Transient Drug Delivery in Central Nervous System Disease. J Med Ultrasound 2014; 22(4): 183-93. http://dx.doi.org/10.1016/j.jmu.2014.11.001
Abbott NJ, Patabendige AAK, Dolman DEM, Yusof SR, Begley DJ. Structure and function of the blood–brain barrier. Neurobiol Disease 2010; 37(1): 13-25. http://dx.doi.org/10.1016/j.nbd.2009.07.030
SerlinY, Shelef I, Knyazer B, Friedman A. Anatomy and physiology of the blood–brain barrier. Seminars in Cell and Developmental Biology 2015; 38: 2-6. http://dx.doi.org/10.1016/j.semcdb.2015.01.002
Ballabh P, Braun A, Nedergaard M. The blood–brain barrier: an overview: Structure, regulation, and clinical implications. Neurobiol Disease 2004; 16(1): 1-13. http://dx.doi.org/10.1016/j.nbd.2003.12.016
van de Haar HJ, Burgmans S, Hofman PAM, Verhey FRJ, Jansen JFA, Backes WH. Blood–brain barrier impairment in dementia: Current and future in vivo assessments. Neurosci Biobehavioral Rev 2015; 49: 71-81. http://dx.doi.org/10.1016/j.neubiorev.2014.11.022
McAllister MS, Krizanac-Bengez L, Macchia F, et al. Mechanisms of glucose transport at the blood–brain barrier: an in vitro study. Brain Res 2001; 904(1): 20-30. http://dx.doi.org/10.1016/S0006-8993(01)02418-0
Gorter JA,van Vliet EA, Aronica E. Status epilepticus, blood-brain barrier disruption, inflammation, and epileptogenesis. Epilepsy Behav 2015. http://dx.doi.org/10.1016/j.yebeh.2015.04.047
Jin XC, Liu J, Yang Y, Liu KJ, Yang YR, Liu WL. Spatiotemporal evolution of blood brain barrier damage and tissue infarction within the first 3 h after ischemia onset. Neurobiol Disease 2012; 48: 309-10. http://dx.doi.org/10.1016/j.nbd.2012.07.007
Lin RH, Cai JL, Nathan C. et al. Neurogenesis is enhanced by stroke in multiple new stem cell niches along the ventricular system at sites of high BBB permeability. Neurobiol Disease 2015; 74: 229-39. http://dx.doi.org/10.1016/j.nbd.2014.11.016
Nagel S, Su Y, Horstmann S, et al. Minocycline and hypothermia for reperfusion injury after focal cerebral ischemia in the rat—Effects on BBB breakdown and MMP expression in the acute and subacute phase. Brain Res 2008; 1188: 198-206. http://dx.doi.org/10.1016/j.brainres.2007.10.052
Yepes M, Roussel BD, Ali C, Vivien D. Tissue-type plasminogen activator in the ischemic brain: more than a thrombolytic. Trends in Neurosci 2009; 32(1): 48-55. http://dx.doi.org/10.1016/j.tins.2008.09.006
Mishiro K, Ishiguro M, Suzuki Y, Tsuruma K, Shimazawa M, Hura H. A broad-spectrum matrix metalloproteinase inhibitor prevents hemorrhagic complications induced by tissue plasminogen activator in mice. Neuroscience 2012; 205: 39-48. http://dx.doi.org/10.1016/j.neuroscience.2011.12.042
Beretta S, Pastori C, Sala G, et al. Acute lipophilicity-dependent effect of intravascular simvastatin in the early phase of focal cerebral ischemia. Neuropharmacol 2011; 60(6): 878-85. http://dx.doi.org/10.1016/j.neuropharm.2011.01.003
Lischper M, Beuck S, Thanabalasundaram G, Pieper C, Galla HJ. Metalloproteinase mediated occludin cleavage in the cerebral microcapillary endothelium under pathological conditions. Brain Res 2010; 1326: 114-27. http://dx.doi.org/10.1016/j.brainres.2010.02.054
Lee K, Lee JS, Jang HJ, et al. Chlorogenic acid ameliorates brain damage and edema by inhibiting matrix metalloproteinase-2 and 9 in a rat model of focal cerebral ischemia. Eur J Pharmacol 2012; 689(1-3): 89-95. http://dx.doi.org/10.1016/j.ejphar.2012.05.028
Li M, Ma RN, Li LH, Qu YZ, Gao GD. Astragaloside IV reduces cerebral edema post-ischemia/reperfusion correlating the suppression of MMP-9 and AQP4. Eur J Pharmacol 2013; 715(1-3): 189-95. http://dx.doi.org/10.1016/j.ejphar.2013.05.022
Luo CL, Li QQ, Chen XP, et al. Lipoxin A4 attenuates brain damageand downregulates the production of pro-inflammatory cytokines and phosphorylated mitogen-activated protein kinases in a mouse model of traumatic brain injury. Brain Res 2013; 1502: 1-10. http://dx.doi.org/10.1016/j.brainres.2013.01.037
Bekes EM, Schweighofer B, Kupriyanova TK, et al. Tumor-Recruited Neutrophils and Neutrophil TIMP-Free MMP-9 Regulate Coordinately the Levels of Tumor Angiogenesis and Efficiency of Malignant Cell Intravasation. The Am J Pathol 2011; 179(3): 1455-70. http://dx.doi.org/10.1016/j.ajpath.2011.05.031
Chang X, Rong CP, Chen YB, et al. (-)-Epigallocatechin-3-gallate attenuates cognitive deterioration in Alzheimer?s disease model mice by upregulating neprilysin expression. Experim Cell Res 2015. http://dx.doi.org/doi:10.1016/j.yexcr.2015.04.004
Li L, Zhang B, Tao YQ, et al. DL-3-n-butylphthalide protects endothelial cells against oxidative/nitrosative stress, mitochondrial damage and subsequent cell death after oxygen glucose deprivation in vitro. Brain Res 2009; 1290: p. 9. http://dx.doi.org/doi:10.1016/j.brainres.2009.07.020
Ishrat T, Sayeed I, Atif F, Hua F, Stein DG. Progesterone and allopregnanolone attenuate blood-brain barrier dysfunction following permanent focal ischemia by regulating the expression of matrix metalloproteinases. Exp Neurol 2010; 226(1): 183-90. http://dx.doi.org/10.1016/j.expneurol.2010.08.023
Kim SJ, Lee SR. Protective effect of melatonin against transient global cerebral ischemia-induced neuronal cell damage via inhibition of matrix metalloproteinase-9. Life Sci 2014; 94(1): p8-16. http://dx.doi.org/10.1016/j.lfs.2013.11.013
Badaut JM, Fukuda AM, Jullienne A, Petry KG. Aquaporin and brain diseases. Biochimica et Biophysica Acta (BBA) - General Subjects 2014; 1840(5): 1554-65. http://dx.doi.org/10.1016/j.bbagen.2013.10.032
Nicchia GP, Nico B, Camassa LMA, et al. The role of aquaporin-4 in the blood–brain barrier development and integrity: Studies in animal and cell culture models. Neurosci 2004; 129(4): p. 935-944. http://dx.doi.org/10.1016/j.neuroscience.2004.07.055
Papadopoulos MC, Verkman AS. Potential utility of aquaporin modulators for therapy of brain disorders. Prog Brain Res 2008; 170: 589-601. http://dx.doi.org/10.1016/S0079-6123(08)00446-9
Wang WW, Xie CL, Zhou LL, Wang GS. The function of aquaporin4 in ischemic brain edema. Clin Neurol Neurosurg 2014; 127: 5-9. http://dx.doi.org/10.1016/j.clineuro.2014.09.012
Shi WZ, Qi LL, Fang SH, Lu YB, Zhang WP, Wei EQ. Aggravated chronic brain injury after focal cerebral ischemia in aquaporin-4-deficient mice. Neurosci Lett 2012; 520(1): 121-5. http://dx.doi.org/10.1016/j.neulet.2012.05.052
Franca VC, Agra MDF, Barbosa-Fillo JM, da-Cunha EVL, da-Silva MS. Physcion and dihydrocarinatin from Aristolochia birostris. Biochemical Systematics and Ecology 2003; 31(11): 1341-3. http://dx.doi.org/10.1016/S0305-1978(03)00098-X
Lin MH, Lee YH, Chiu WT, Huang KS. Curcumin Provides Neuroprotection After Spinal Cord Injury. Journal of Surgical Research 2011; 166(2): 280-9. http://dx.doi.org/10.1016/j.jss.2009.07.001
Fanga W, Deng Y, Li Y, et al. Blood brain barrier permeability and therapeutic time window of Ginkgolide B in ischemia-reperfusion injury. Eur J Pharmaceut Sci 2012; 39: 8-14. http://dx.doi.org/doi:10.1016/j.ejps.2009.10.002
Lapierre LA. The molecular structure of the tight junction. Adv Drug Delivery Rev 2000; 41: 255-64. http://dx.doi.org/10.1016/S0169-409X(00)00045-4
Sandoval KE, Witt KA. Blood-brain barrier tight junction permeability and ischemic stroke. Neurobiol of Disease 2008; 32(2): 200-219. http://dx.doi.org/10.1016/j.nbd.2008.08.005
Zhang YM, Zhou Y, Qiu LB, Ding GR, Pang XF. Altered Expression of Matrix Metalloproteinases and Tight Junction Proteins in Rats following PEMF-Induced BBB Permeability Change. Biomed and Environ Sci 2012; 25(2): 197-202. http://dx.doi.org/doi:10.3967/0895-3988.2012.02.011
Balbuena P, Li W, Ehrich M. Assessments of tight junction proteins occludin, claudin 5 and scaffold proteins ZO1 and ZO2 in endothelial cells of the rat blood–brain barrier: Cellular responses to neurotoxicants malathion and lead acetate. Neurotoxicol 2011; 32(1): 58-67. http://dx.doi.org/10.1016/j.neuro.2010.10.004
Tenenbaum T, Matalon D, Adam R, et al. Dexamethasone prevents alteration of tight junction-associated proteins and barrier function in porcine choroid plexus epithelial cells after infection with Streptococcus suis in vitro. Brain Res 2008; 1229: 1-17. http://dx.doi.org/10.1016/j.brainres.2008.06.118
Li WL, Liu J, He P, et al. Hydroxysafflor yellow A protectsmethylglyoxal-induced injury in the cultured human brain microvascular endothelial cells. Neurosci Lett 2013; 549: 146-50. http://dx.doi.org/10.1016/j.neulet.2013.06.007
Meng FR, Liu R, Gao M, et al. Pinocembrin attenuates blood-brain barrier injury induced by global cerebral ischemia-reperfusion in rats. Brain Res 2011; 1391: 93-101. http://dx.doi.org/10.1016/j.brainres.2011.03.010
Huang P, Zhou CM, Hu Q, et al. Cerebralcare Granule attenuates blood–brain barrier disruption after middle cerebral artery occlusion in rats. Exper Neurol 2012; 237: 453-63. http://dx.doi.org/10.1016/j.expneurol.2012.07.017
Dietrich JB. The adhesion molecule ICAM-1 and its regulation in relation with the blood–brain barrier. J Neuroimmunol 2002; 128(1): 58-68. http://dx.doi.org/10.1016/S0165-5728(02)00114-5
Murta V, Farias MI, Pitossi FJ, Ferrari CC. Chronic systemic IL-1β exacerbates central neuroinflammation independently of the blood–brain barrier integrity. Journal of Neuroimmunology 2015; 278: 30-43. http://dx.doi.org/10.1016/j.jneuroim.2014.11.023
Nagakannan P, Shivasharan BD, Thippeswamy BS, Veerapur VP, Bansal P. Protective effect of hydroalcoholic extract of Mimusops elengi Linn. flowers against middle cerebral artery occlusion induced brain injury in rats. J Ethnopharmacol 2012. 140(2): 247-540. http://dx.doi.org/10.1016/j.jep.2012.01.012
Hu JZ, Huang JH, Xiao ZM, Li JH, Li XM, Lu HB. Tetramethylpyrazine accelerates the function recovery of traumatic spinal cord in rat model by attenuating inflammation. J Neurol Sci 2013; 324(1-2): 94-9. http://dx.doi.org/10.1016/j.jns.2012.10.009
Deng YN, Shi J, Liu J, Qu QM. Celastrol protects human neuroblastoma SH-SY5Y cells from rotenone-induced injury through induction of autophagy. Neurochem Int 2013; 63(1): 1-9. http://dx.doi.org/10.1016/j.neuint.2013.04.005
Meng Z, Li M, He S, et al. Ectopic expression of human angiopoietin-1 promotes functional recovery and neurogenesis after focal cerebral ischemia. Neuroscience 2014; 267: 135-46. http://dx.doi.org/10.1016/j.neuroscience.2014.02.036
Yazulla S. Endocannabinoids in the retina: From marijuana to neuroprotection. Progress in Retinal and Eye Res 2008; 27(5): 501-26. http://dx.doi.org/10.1016/j.preteyeres.2008.07.002
Kraft P, Schwarz T, Gob E, et al. The phosphodiesterase-4 inhibitor rolipram protects from ischemic stroke in mice by reducing blood-brain-barrier damage, inflammation and thrombosis. Exp Neurol 2013; 247: 80-90. http://dx.doi.org/10.1016/j.expneurol.2013.03.026
Panossian A, Hamm R, Wikman G, Efferth T. Mechanism of action of Rhodiola, salidroside, tyrosol and triandrin in isolated neuroglial cells: An interactive pathway analysis of the downstream effects using RNA microarray data. Phytomed 2014; 21(11): 1325-48. http://dx.doi.org/10.1016/j.phymed.2014.07.008
Heo JH, Han SW, Lee SK. Free radicals as triggers of brain edema formation after stroke. Free Radic Biol Med 2005; 39(1): 51-70. http://dx.doi.org/10.1016/j.freeradbiomed.2005.03.035
Imperatore C, Germano A, Avella D, Tomasello F, Costa G. Effects of the radical scavenger AVS on behavioral and BBB changes after experimental subarachnoid hemorrhage. Life Sci 2000; 66(9): 779-90. http://dx.doi.org/10.1016/S0024-3205(99)00651-7
Mohammadi MT, Shid-Moosavi SM, Dehghani GA. Contribution of nitric oxide synthase (NOS) in blood-brain barrier disruption during acute focal cerebral ischemia in normal rat. Pathophysiol 2012; 19(1): 13-20. http://dx.doi.org/10.1016/j.pathophys.2011.07.003
Ferreira FDR, Valentim IB, Ramones ELC, et al. Antioxidant activity of the mangiferin inclusion complex with β-cyclodextrin. LWT-Food Sciand Technol 2013; 51(1): 129-34. http://dx.doi.org/doi:10.1016/j.lwt.2012.09.032
Mohagheghi F, Bigdeli MR, Rasoulian B, Hashemi P, Pour MR. The neuroprotective effect of olive leaf extract is related to improved blood–brain barrier permeability and brain edema in rat with experimental focal cerebral ischemia. Phytomed 2011; 18(2-3): 170-5. http://dx.doi.org/10.1016/j.phymed.2010.06.007
Hyun SW, Jang M, Park SW, Jung YS. Onion (Allium cepa) extract attenuates brain edema. Nutrition 2013; 29(1): 244-9. http://dx.doi.org/10.1016/j.nut.2012.02.017
Rabiei Z, Rafieian-Kopaei M. Neuroprotective effect of pretreatment with Lavandula officinalis ethanolic extract on blood-brain barrier permeability in a rat stroke model. Asian Pac J Trop Med 2014; 7S1: S421-6.
Downloads
Published
How to Cite
Issue
Section
License
Policy for Journals/Articles with Open Access
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are permitted and encouraged to post links to their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work
Policy for Journals / Manuscript with Paid Access
Authors who publish with this journal agree to the following terms:
- Publisher retain copyright .
- Authors are permitted and encouraged to post links to their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work .