RPCA with Log-Schatten Norm and Adaptive Histogram Equalization for Medical Imaging

Authors

DOI:

https://doi.org/10.6000/1929-6029.2025.14.27

Keywords:

RPCA, Log-Schatten Norm, AHE, Medical Imaging and ADMM

Abstract

Medical imaging, especially cancer and retinal fundus analysis, is often compromised by artifacts and heavy noise and artifact, which can hinder accurate diagnosis. Existing low-rank sparse component methods, such as RPCA with the conventional nuclear norm, assume uniform singular value weights, which may not hold true due to noise variations in images. We recently developed RPCA with the log-weighted nuclear norm, which addresses some of these issues but still relies on weight selection, potentially introducing bias. To overcome these limitations, we propose a novel method that integrates RPCA with Log-Schatten Norm (LSN) and Adaptive Histogram Equalization (AHE) for medical imaging and clinical purposes. The Log-Schatten Norm improves singular value penalization and structure preservation, while AHE enhances contrast and reduces noise. The method is formulated as an optimization problem and solved using the Alternating Direction Method for Multipliers (ADMM). Experimental results on publicly available retinal and cancer image datasets demonstrate that our method outperforms existing methods in enhancing overall image quality, making it a promising tool for medical imaging applications.

References

Ahmad I, Singh VP, Gore MM. Detection of diabetic retinopathy using discrete wavelet-based center-symmetric local binary pattern and statistical features. Journal of Imaging Informatics in Medicine 2024; 1-28. DOI: https://doi.org/10.1007/s10278-024-01243-2

Besag J, York J, Mollie A. Bayesian image restoration, with two applications in spatial statistics. Annals of the institute of Statistical Mathematics 1991; 43: 1-20. DOI: https://doi.org/10.1007/BF00116466

K¨unsch HR. Robust priors for smoothing and image restoration. Annals of the Institute of Statistical Mathematics 1994; 46: 1-19. DOI: https://doi.org/10.1007/BF00773588

Zhu H, Li T, Zhao B. Statistical learning methods for neuroimaging data analysis with applications. Annual review of Biomedical Data Science 2023; 6(1): 73-104. DOI: https://doi.org/10.1146/annurev-biodatasci-020722-100353

Gianfrancesco MA, Goldstein ND. A narrative review on the validity of electronic health record-based research in epidemiology. BMC Medical Research Methodology 2021; 21(1): 234. DOI: https://doi.org/10.1186/s12874-021-01416-5

Farag AA. Biomedical image analysis: Statistical and variational methods. Cambridge University Press 2014. DOI: https://doi.org/10.1017/CBO9781139022675

Feng L, Wang J. Projected robust pca with application to smooth image recovery. Journal of Machine Learning Research 2022; 23(249): 1- 41.

Nie F, Wu D, Wang R, Li X. Truncated robust principle component analysis with a general optimization framework. IEEE Transactions on Pattern Analysis and Machine Intelligence 2020; 44(2): 1081-1097. DOI: https://doi.org/10.1109/TPAMI.2020.3027968

Raunig DL, McShane LM, Pennello G, Gatsonis C, Carson PL, Voyvodic JT, et al. Quantitative imaging biomarkers: a review of statistical methods for technical performance assessment. Statistical Methods in Medical Research 2015; 24(1): 27-67. DOI: https://doi.org/10.1177/0962280214537344

Webb-Vargas Y, Chen S, Fisher A, Mejia A, Xu Y, Crainiceanu C, Caffo B, Lindquist MA. Big data and neuroimaging. Statistics in Biosciences 2017; 9: 543-558. DOI: https://doi.org/10.1007/s12561-017-9195-y

Li K, Wen Y-W, Xiao X, Zhao M. Robust pca based on adaptive weighted least squares and low-rank matrix factorization 2024; arXiv preprint arXiv: 2412.14629. DOI: https://doi.org/10.2139/ssrn.5191156

Naz H, Ahuja NJ. A novel contrast enhancement technique for diabetic retinal image pre-processing and classification. International Ophthalmology 2024; 45(1): 11. DOI: https://doi.org/10.1007/s10792-024-03377-2

Zhou H, Li L, Zhu H. Tensor regression with applications in neuroimaging data analysis. Journal of the American Statistical Association 2013; 108(502): 540-552. DOI: https://doi.org/10.1080/01621459.2013.776499

Fu Y, Wang C, Wang Y, Chen B, Peng Q, Wang L. Automatic detection of longitudinal changes for retinal fundus images based on low-rank decomposition. Journal of Medical Imaging and Health Informatics 2018; 8(2): 284-294. DOI: https://doi.org/10.1166/jmihi.2018.2110

Ong F, Lustig M. Beyond low rank+ sparse: Multiscale low rank matrix decomposition. IEEE Journal of Selected Topics in Signal Processing 2016; 10(4): 672-687. DOI: https://doi.org/10.1109/JSTSP.2016.2545518

Otazo R, Candes E, Sodickson DK. Low-rank plus sparse matrix decomposition for accelerated dynamic mri with separation of background and dynamic components. Magnetic resonance in medicine, 73(3): 1125-1136, 2015. DOI: https://doi.org/10.1002/mrm.25240

Changfa Shi, Yuanzhi Cheng, Jinke Wang, Yadong Wang, Kensaku Mori, and Shinichi Tamura. Low-rank and sparse decomposition based shape model and probabilistic atlas for automatic pathological organ segmentation. Medical Image Analysis 2017; 38: 30-49. DOI: https://doi.org/10.1016/j.media.2017.02.008

Wang J, Lu C-H, Liu J-X, Dai L-Y, Kong X-Z. Multi-cancer samples clustering via graph regularized low-rank representation method under sparse and symmetric constraints. BMC Bioinformatics 2019; 20: 1-15. DOI: https://doi.org/10.1186/s12859-019-3231-5

Liu F, Huang W. Esdiff: a joint model for low-quality retinal image enhancement and vessel segmentation using a diffusion model. Biomedical Optics Express 2023; 14(12): 6563-6578. DOI: https://doi.org/10.1364/BOE.506205

Wang L, Schaefer A. Diagnosing diabetic retinopathy from images of the eye fundus. cs230 2020; 14.

Likassa HT, Chen D-G, Kewei Chen, Yalin Wang, and Wenhui Zhu. Robust pca with lw, and l2, 1 norms: A novel method for low-quality retinal image enhancement. Journal of Imaging 2024; 10(7): 151. DOI: https://doi.org/10.3390/jimaging10070151

Chandrasekaran V, Sanghavi S, Parrilo PA, Willsky AS. Sparse and low-rank matrix decompositions. IFAC Proceedings Volumes 2009; 42(10): 1493-1498. DOI: https://doi.org/10.3182/20090706-3-FR-2004.00249

Wang J, Li Y-J, Yang K-F. Retinal fundus image enhancement with image decomposition and visual adaptation. Computers in Biology and Medicine 2021; 128: 104116. DOI: https://doi.org/10.1016/j.compbiomed.2020.104116

Zhou M, Jin K, Wang S, Ye J, Qian D. Color retinal image enhancement based on luminosity and contrast adjustment. IEEE Transactions on Biomedical Engineering 2017; 65(3): 521-527. DOI: https://doi.org/10.1109/TBME.2017.2700627

S¨ukei E, Rumetshofer E, Schmidinger N, Mayr A, Schmidt-Erfurth U, Klambauer G, Bogunovi´c H. Multimodal representation learning in retinal imaging using self-supervised learning for enhanced clinical predictions. Scientific Reports 2024; 14(1): 26802. DOI: https://doi.org/10.1038/s41598-024-78515-y

Likassa HT, Chen DG, Sun D. A novel rpca method using log-weighted nuclear and l2, 1 norms combined with contrastlimited adaptive histogram equalization (clahe) for high dimensional natural and medical image data. International Journal of Statistics in Medical Research 2024; 13: 275-290. DOI: https://doi.org/10.6000/1929-6029.2024.13.25

Likassa HT, Chen D-G. Robust principal component analysis for retinal image enhancement. In Biostatistics Modeling and Public Health Applications Springer 2024; 12: 157-190. DOI: https://doi.org/10.1007/978-3-031-69690-9_7

Bie C, Liang Y, Zhang L, Zhao Y, Chen Y, Zhang X, He X, Song X. Motion correction 11 of chemical exchange saturation transfer mri series using robust principal component analysis (rpca) and pca. Quantitative Imaging in Medicine and Surgery 2019; 9(10): 1697. DOI: https://doi.org/10.21037/qims.2019.09.14

Mohammed S, Masotti M, Osher N, Acharyya S, Baladandayuthapani V. Statistical analysis of quantitative cancer imaging data. Statistics and Data Science in Imaging 2024; 1(1): 2405348. DOI: https://doi.org/10.1080/29979676.2024.2405348

Santos CS, Amorim-Lopes M. Externally validated and clinically useful machine learning algorithms to support patient-related decision-making in oncology: a scoping review. BMC Medical Research Methodology 2025; 25(1): 45. DOI: https://doi.org/10.1186/s12874-025-02463-y

Tibrewala R, Dutt T, Tong A, Ginocchio L, Lattanzi R, Keerthivasan MB, et al. Fastmri prostate: A public, biparametric mri dataset to advance machine learning for prostate cancer imaging. Scientific Data 2024; 11(1): 404. DOI: https://doi.org/10.1038/s41597-024-03252-w

Kamarudin AN, Cox T, Kolamunnage-Dona R. Time-dependent roc curve analysis in medical research: current methods and applications. BMC Medical Research Methodology 2017; 17: 1-19. DOI: https://doi.org/10.1186/s12874-017-0332-6

Lin Z, Chen M, Ma Y. The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices 2010; arXiv preprint arXiv: 1009.5055.

Cand`es EJ, Li X, Ma Y, Wright J. Robust principal component analysis? Journal of the ACM 2011; 58(3): 1-37. DOI: https://doi.org/10.1145/1970392.1970395

Likassa HT, Fang W-H, Leu J-S. Robust image recovery via affine transformation and I {2, 1} norm. IEEE Access 2019; 7: 125011-125021. DOI: https://doi.org/10.1109/ACCESS.2019.2932470

Boyd S, Parikh N, Chu E, Peleato B, Eckstein J. Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends® in Machine Learning 2011; 3(1): 1-122. DOI: https://doi.org/10.1561/2200000016

Nie F, Huang H, Ding C. Low-rank matrix recovery via efficient schatten p-norm minimization. In Proceedings of the AAAI Conference on Artificial Intelligence 2012; 26: 655-661. DOI: https://doi.org/10.1609/aaai.v26i1.8210

Xie Y, Gu S, Liu Y, Zuo W, Zhang W, Zhang L. Weighted schatten p-norm minimization for image denoising and background subtraction. IEEE Transactions on Image Processing 2016; 25(10): 4842-4857. DOI: https://doi.org/10.1109/TIP.2016.2599290

Loris I, Verhoeven C. On a generalization of the iterative soft-thresholding algorithm for the case of non-separable penalty. Inverse Problems 2011; 27(12): 125007. DOI: https://doi.org/10.1088/0266-5611/27/12/125007

Likassa HT. New robust principal component analysis for joint image alignment and recovery via affine transformations, frobenius and l2, 1 norms. International Journal of Mathematics and Mathematical Sciences 2020; 2020(1): 8136384. DOI: https://doi.org/10.1155/2020/8136384

Likassa HT, Fang W-H, Chuang Y-A. Modified robust image alignment by sparse and low rank decomposition for highly linearly correlated data. In 3rd International Conference on Intelligent Green Building and Smart Grid 2018; pp. 1-4. DOI: https://doi.org/10.1109/IGBSG.2018.8393549

Downloads

Published

2025-05-03

How to Cite

Likassa, H. T. ., & Chen, D. G. . (2025). RPCA with Log-Schatten Norm and Adaptive Histogram Equalization for Medical Imaging. International Journal of Statistics in Medical Research, 14, 274–288. https://doi.org/10.6000/1929-6029.2025.14.27

Issue

Section

General Articles